Ti6Al4V Powder
$0.00
Ti6Al4V Powder
| Product | Ti6Al4V Powder |
| CAS No. | 12743-70-3 |
| Appearance | Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | TiAlV |
| Density | 2.2g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-321/25 |
Ti6Al4V Description:
Ti6Al4V Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.
Ti6Al4V Powder Related Information :
Storage Conditions:
Airtight sealed, avoid light and keep dry at room temperature.
Please contact us for customization and price inquiry
Email: contact@nanochemazone.com
Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.
Overview of Ti6Al4V Powder
Ti6Al4V powder, also referred to as Grade 5 titanium alloy, is one of the most popular titanium alloy powders. It contains 6% aluminum and 4% vanadium as the key alloying elements along with the remainder titanium.
Spherical powder ti6al4v offers an exceptional combination of high strength, low weight, corrosion resistance, biocompatibility, and workability.
Key properties and advantages of Ti6Al4V powder:
Ti6Al4V Powder Properties and Characteristics
| Properties | Details |
| Composition | Ti-6Al-4V alloy |
| Density | 4.43 g/cc |
| Particle shape | Predominantly spherical |
| Size range | 15-45 microns |
| Apparent density | Up to 60% of true density |
| Flowability | Good |
| Strength | High for a titanium alloy |
| Corrosion resistance | Excellent |
Ti6Al4V is widely used across aerospace, medical, automotive, chemical, and consumer industries owing to its well-balanced property profile.
| Element | Weight % |
| Titanium | Balance |
| Aluminum | 5.5-6.75% |
| Vanadium | 3.5-4.5% |
| Oxygen | <0.2% |
| Carbon | <0.1% |
| Nitrogen | <0.05% |
| Hydrogen | <0.015% |
| Iron | <0.3% |
Titanium forms the matrix providing strength and corrosion resistance
Aluminum stabilizes alpha phase and increases strength
Vanadium stabilizes beta phase and improves workability
Other elements limited as impurities
The optimized Ti-Al-V ratios provide an exceptional combination of strength, ductility, fracture toughness, and fatigue strength.
Ti6Al4V Powder Physical Properties
| Property | Values |
| Density | 4.43 g/cc |
| Melting point | 1604-1660°C |
| Thermal conductivity | 6.7 W/mK |
| Electrical resistivity | 170 μΩ-cm |
| Coefficient of thermal expansion | 8.4 x 10^-6 /K |
| Maximum service temperature | 400°C |
Low density compared to steels
High melting point enables use at moderately elevated temperatures
Low thermal conductivity requires design considerations
High electrical resistivity suitable for corrosion resistant fasteners
CTE lower than steels and nickel alloys
These properties make Ti6Al4V well suited for many lightweight structural applications across industries.
Ti6Al4V Powder Mechanical Properties
| Property | Values |
| Tensile strength | 950 – 1050 MPa |
| Yield strength | 860 – 950 MPa |
| Elongation | 10 – 18% |
| Hardness | 330 – 380 HB |
| Modulus of elasticity | 110 – 120 GPa |
| Fatigue strength | 400 – 500 MPa |
Excellent combination of high strength and reasonable ductility
Strength exceeds other titanium grades like commercially pure titanium
Hardness higher than unalloyed titanium
Outstanding fatigue life makes it suitable for cyclic loading applications
The properties make Ti6Al4V suitable for demanding applications requiring high specific strength and fatigue resistance.
Ti6Al4V powder is used widely across industries:
Ti6Al4V Powder Applications
| Industry | Uses |
| Aerospace | Structural airframe parts, engine components |
| Biomedical | Orthopedic and dental implants |
| Automotive | Connecting rods, valves, springs |
| Chemical | Tanks, vessels, heat exchangers |
| Consumer | Sporting goods, watch cases, cellphone bodies |
| 3D Printing | Aerospace and medical components |
Some specific product applications include:
Bone plates, joint replacement implants
Airplane and helicopter structural components
Automotive engine valves and connecting rods
Chemical equipment like pipes, pumps, valves
Sporting goods including golf clubs and bicycle frames
Additive manufacturing of lightweight structures
Ti6Al4V provides the best strength-to-weight ratio and biocompatibility for critical structural parts across these demanding sectors.
Ti6Al4V Powder Applications in Metal 3D Printing
Ti6Al4V powder is a widely used material for metal 3D printing due to its exceptional mechanical properties, biocompatibility, and corrosion resistance. It is particularly well-suited for applications in the aerospace, medical, and automotive industries. Here are some of the metal 3D printing methods that can utilize Ti6Al4V powder:
- Selective Laser Melting (SLM): SLM is a powder bed fusion (PBF) technique that employs a high-power laser to selectively melt and fuse fine layers of Ti6Al4V powder. This method produces high-density, high-strength parts with complex geometries.
- Electron Beam Melting (EBM): EBM is another PBF technique that utilizes a focused electron beam to melt Ti6Al4V powder. It is known for its ability to produce parts with excellent surface quality and fine features.
- Directed Energy Deposition (DED): DED is an additive manufacturing process that deposits material through a nozzle while simultaneously melting it with a laser or electron beam. Ti6Al4V powder can be used in DED to create large-scale, near-net-shape components.
- Binder Jetting (BJ): BJ is a PBF technique that uses a liquid binder to selectively adhere Ti6Al4V powder particles together. The unbound powder is then removed, leaving a pre-formed part that is sintered to achieve full density.
Additional Considerations:
The choice of 3D printing method for Ti6Al4V powder depends on the specific application requirements, such as part geometry, mechanical properties, and surface finish.
Each 3D printing method has its own advantages and limitations, and it is crucial to carefully evaluate these factors before selecting the most suitable technique.
Proper handling and storage of Ti6Al4V powder are essential to ensure the quality of 3D-printed parts and to minimize safety hazards.
Ti6Al4V powder continues to be a valuable material for metal 3D printing, enabling the fabrication of high-performance components for various industries. As 3D printing technologies advance, the applications of Ti6Al4V powder are expected to expand even further.
Ti6Al4V Powder Standards
| Standard | Description |
| ASTM F2924 | Additive manufacturing Ti6Al4V alloy |
| ASTM F3001 | Specs for gas atomized Ti alloy powder for AM |
| AMS 4954 | Composition limits of Ti-6Al-4V powder for additive manufacturing |
| ASTM B348 | Specs for Ti and Ti alloy powders |
| ASTM F1472 | Wrought Ti6Al4V alloy for surgical implants |
These define:
Chemical composition ranges
Required mechanical properties
Powder production method – inert gas atomization
Impurity limits like O, N, C, Fe
Particle size distribution and morphology
Testing methods to verify powder quality
Certified Ti6Al4V powder meeting these specifications ensures optimal properties and performance for different applications across industries.
Ti6Al4V Powder Particle Sizes
| Particle Size | Characteristics |
| 15-45 microns | General purpose size range |
| 45-100 microns | Optimized for cold spraying |
| 5-25 microns | Finer sizes used in laser AM processes |
Finer powder provides higher resolution and surface finish
Coarser powder suits high deposition rate methods like cold spraying
Size range tailored based on production method used
Spherical morphology maintained across size ranges
Controlling particle size distribution and morphology is critical for high powder packing density, flowability, and final part properties.
Ti6Al4V Powder Apparent Density
| Apparent Density | Details |
| Up to 60% of true density | For spherical powder morphology |
| 2.6 – 3.0 g/cc | Improves with greater packing density |
Higher apparent density improves powder flowability and die filling efficiency
Values up to 65% are possible with optimized spherical powder
High apparent density minimizes press cycle time
Maximizing apparent density allows efficient automated powder pressing and sintering to full density.
Ti6Al4V Powder Production Method
Ti6Al4V Powder Production
VIGA (Vacuum Induction Inert Gas Atomization) Equipment
VIGA equipment has a wide range of applications, mainly for the production of high-performance iron-based, nickel-based, cobalt-based, aluminium-based, copper-based and other advanced alloy powder materials. It is widely used in aerospace, health, tooling, automobile, machinery, electronics, new energy and other fields and also suitable for additive manufacturing (3D printing), melting deposition, laser cladding, thermal spraying, powder metallurgy, hot isostatic pressing and other advanced manufacturing processes.
| Method | Details |
| Gas atomization | High pressure inert gas breaks up molten alloy stream into fine droplets |
| Vacuum arc melting | High purity input materials refined and melted in vacuum |
| Multiple remelts | Improves chemical homogeneity |
| Sieving | Classifies powder into different particle size fractions |
Gas atomization with inert gas produces clean, spherical powder
Vacuum processing minimizes gaseous impurities
Multiple remelts improve uniformity of composition
Post-processing allows particle size distribution control
Automated methods combined with stringent quality control result in reliable and consistent Ti6Al4V powder suitable for critical applications.
Ti6Al4V for industrial applications: $100-150 per kg
Significantly lower pricing applicable for bulk order quantities in the tons range.
Ti6Al4V Powder Handling and Storage
| Recommendation | Reason |
| Avoid inhalation | Due to risk of lung tissue damage from fine particles |
| Use protective mask | Prevent accidental ingestion |
| Handle in ventilated areas | Reduce airborne particle suspension |
| Ensure no ignition sources | Powder can combust in oxygen atmosphere |
| Follow anti-static protocols | Prevent fire from static discharge while handling |
| Store sealed containers in cool, dry area | Prevent moisture pickup and reactivity |
Although Ti6Al4V powder is relatively inert, recommended precautions should be taken during handling and storage to preserve purity.
Ti6Al4V Powder Inspection and Testing
| Test | Details |
| Chemical analysis | ICP spectroscopy used to verify composition |
| Particle size distribution | Laser diffraction used to determine size distribution |
| Apparent density | Measured using Hall flowmeter as per ASTM B212 |
| Powder morphology | SEM imaging to check particle sphericity |
| Flow rate analysis | Using Hall flowmeter funnel |
| Tap density test | Density measured after mechanically tapping powder sample |
Testing ensures the powder meets the required chemical composition, physical characteristics, morphology, density, and flow specifications per applicable standards.
Ti6Al4V Powder Pros and Cons
Advantages of Ti6Al4V Powder
Excellent strength-to-weight ratio
High fatigue strength and fracture toughness
Outstanding corrosion resistance
Good ductility and formability
High biocompatibility for medical uses
Cost-effective compared to other titanium alloys
Limitations of Ti6Al4V Powder
Moderate high temperature oxidation resistance
Lower strength than some titanium alloys
High reactivity requires inert processing atmosphere
Difficult to machine in fully sintered state
Limitations in welding the alloy
Toxicity concerns about vanadium element
Comparison With Ti64 and Ti Grade 2 Powders
Ti6Al4V vs. Ti64 and Grade 2 Powder
| Parameter | Ti6Al4V | Ti64 | Ti Grade 2 |
| Aluminum | 6% | 6% | – |
| Vanadium | 4% | 4% | – |
| Strength | 950-1050 MPa | 950-1050 MPa | 420-550 MPa |
| Ductility | 10-18% | 10-18% | 15-30% |
| Cost | Moderate | Moderate | Low |
| Uses | Aerospace, medical | Aerospace, automotive | Industrial, consumer |
Ti6Al4V and Ti64 have virtually identical properties
Grade 2 Ti provides better ductility but lower strength
Ti6Al4V preferred for critical structural parts needing high strength
Ti6Al4V Powder FAQs
Q: What are the main applications of Ti6Al4V powder?
A: The main applications include aerospace structural components, biomedical implants like hip and knee joints, automotive parts like valves and connecting rods, chemical process equipment, and consumer products like sports equipment and watch cases.
Q: Why is Ti6Al4V the most popular titanium alloy?
A: Ti6Al4V provides the best all-round combination of high strength, low density, fracture toughness, corrosion resistance, bio-compatibility, weldability, and moderate cost.
Q: What precautions should be taken when working with Ti6Al4V powder?
A: Recommended precautions include using protective gear, handling in inert atmosphere, avoiding ignition sources, controlling static charges, using non-sparking tools, and storing sealed containers in a cool, dry place.
Q: How does vanadium affect the properties of Ti6Al4V alloy?
A: Vanadium acts as a beta stabilizer which improves workability. It also contributes to precipitation hardening which imparts strength and high temperature creep resistance to the alloy.
Description
Note: For pricing & ordering information, please get in touch with us at sales@nanochemazone.com
Please contact us for quotes on Larger Quantities and customization. E-mail: contact@nanochemazone.com
Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.
NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at sales@nanochemazone.com or by phone at (+1 780 612 4177) if you have anyÂ
Only logged in customers who have purchased this product may leave a review.
Related products
CPTi Powder
CPTi Powder
| Product | CPTi Powder |
| CAS No. | 12083-20-1 |
| Appearance | White -Silvery Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Cp-Ti |
| Density | 4.51g/cm3 |
| Molecular Weight | 41.86g/mol |
| Product Codes | NCZ-DCY-312/25 |
CPTi Description:
CPTi Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.CPTi Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. CPTi Powder CPTi (chemically pure titanium) powder is a high purity titanium metal powder used in various applications requiring excellent corrosion resistance, high strength, low weight, and biocompatibility. It offers superior properties compared to other titanium grades and alloy powders. Overview of CPTi Powder CPTi (chemically pure titanium) powder is a high purity titanium metal powder used in various applications requiring excellent corrosion resistance, high strength, low weight, and biocompatibility. It offers superior properties compared to other titanium grades and alloy powders. CPTi powder is produced by gas atomization process to achieve spherical powder morphology with minimal contamination. It has a particle size range of 15-150 microns generally. The high purity and cleanliness result in excellent flowability, packing density and sinterability. Some key properties and advantages of CPTi powder include: CPTi Powder Properties and Characteristics| Properties | Details |
| Composition | 99.5% minimum Titanium. Low O, C, N, H, Fe impurities |
| Density | 4.5 g/cc |
| Flowability | Excellent due to spherical morphology |
| Sinterability | Excellent, achieves near full density |
| Particle shape | Predominantly spherical |
| Particle size range | 15-150 microns |
| Apparent density | 2.7-3.2 g/cc |
| Purity | Up to 99.995% Ti content |
| Impurities | Low oxygen, nitrogen, carbon, iron |
| Color | Dark gray with metallic luster |
| Element | Weight % |
| Titanium | 99.5% min |
| Oxygen | 0.08% – 0.40% |
| Carbon | 0.03% – 0.08% |
| Nitrogen | 0.01% – 0.05% |
| Hydrogen | 0.005% – 0.015% |
| Iron | 0.05% – 0.25% |
| Grade | Purity | Particle Size | Applications |
| CPTi Grade 1 | 99.5% min | Medium, large | General use |
| CPTi Grade 2 | 99.9% | Fine, medium | Aerospace, medical |
| CPTi Grade 3 | 99.95% | Fine | Medical, dental |
| CPTi Grade 4 | 99.99% | Ultrafine | Implants, high purity uses |
| Properties | Values |
| Density | 4.5 g/cc |
| Melting point | 1668°C |
| Thermal conductivity | 21.9 W/mK |
| Electrical resistivity | 53.8 ohm-cm |
| Young’s modulus | 107 GPa |
| Poisson’s ratio | 0.33 |
| Mohs hardness | 6 |
| Oxidation resistance | Up to 590°C in air |
| Properties | Values |
| Tensile strength | 420 – 550 MPa |
| Yield strength | 380 – 470 MPa |
| Elongation | 15 – 30% |
| Hardness | 200-240 HV |
| Fatigue strength | 200-300 MPa |
| Industry | Application Examples |
| Aerospace | Engine components, airframe parts, fasteners |
| Medical | Implants, prosthetics, instruments |
| Automotive | Valves, connecting rods, springs |
| Chemical | Pumps, valves, tanks, pipes |
| 3D printing | Aerospace and medical components |
| Metal injection molding | Dental instruments, hardware |
| Investment casting | Turbine blades, golf club heads |
| Standard | Description |
| ASTM B348 | Standard specification for titanium and titanium alloy powders |
| ASTM F67 | Standard specification for unalloyed titanium bars for surgical implants |
| ISO 5832-2 | Implant grade wrought titanium materials |
| Particle size | Typical size range | Applications |
| Fine | 1-25 microns | Investment casting, MIM |
| Medium | 25-45 microns | Press and sinter, HIP |
| Coarse | 45-150 microns | Thermal and cold spraying |
| Apparent Density | Characteristics |
| 2.7 – 3.0 g/cc | Unalloyed CPTi powder |
| 3.0 – 3.2 g/cc | Alloyed CPTi powder |
| Up to 50% of true density | Due to voids between particles |
| Method | Details |
| Gas atomization | High pressure argon gas disintegrates molten Ti stream into fine droplets, which solidify into spherical powder |
| Vacuum arc melting | High purity Ti input stock is refined to reduce gaseous impurities like O, N, H |
| Multiple melting | Ensures chemical homogeneity of raw material |
| Sieving | Classifies powder into different particle size distributions |
| Blending | Powders with different particle sizes are mixed in optimized ratios |
| Recommendation | Reason |
| Avoid inhalation | Due to small particle size |
| Use protective masks | Prevent ingestion through nose/mouth |
| Conduct handling in ventilated areas | Reduce airborne powder circulation |
| Use hazmat suits in large operations | Minimize skin contact |
| Ensure no ignition sources nearby | Powder can combust in oxygen atmosphere |
| Follow anti-static protocols | Prevent accidental fire due to buildup of static charge |
| Use non-sparking tools | Avoids possibility of ignition during handling |
| Store sealed containers in cool, dry area | Prevents moisture pickup and reactivity |
| Test | Details |
| Chemistry analysis | ICP spectroscopy verifies elemental composition |
| Particle size distribution | Sieve analysis determines size distribution |
| Apparent density | Measured as per ASTM B212 standard |
| Powder morphology | Scanning electron microscopy verifies spherical shape |
| Flow rate | Time taken for fixed powder quantity to flow through defined nozzle |
| Tap density | Density measured after mechanically tapping powder sample |
| Compressibility | Monitoring of powder bed density change during compression |
| Factor | Effect |
| Air, oxygen | Moderate oxidation risk above 500°C |
| Moisture | Low corrosion rate at room temperature |
| Hydrocarbons | Risk of fire if allowed to contaminate powder |
| Acids, bases | Low corrosion rates in neutral solutions |
| Organic solvents | Some absorption and discoloration if immersed |
| Elevated temperatures | Increased reactivity with oxygen and nitrogen |
| Parameter | CPTi Powder | Ti-6Al-4V Powder |
| Density | 4.5 g/cc | 4.42 g/cc |
| Tensile strength | 420 – 550 MPa | 950 – 1050 MPa |
| Ductility | 15 – 30% | 10 – 18% |
| Fatigue strength | 200 – 300 MPa | 500 – 600 MPa |
| Corrosion resistance | Excellent | Moderate |
| Oxidation resistance | Excellent | Good |
| Cost | Low | Moderate |
| Toxicity | None | Low |
| Uses | Low temperature applications, prosthetics | Aerospace components, automotive parts |
PREF Refractory Titanium Alloy Powder
PREF Refractory Titanium Alloy Powder
| Product | Â PREF Refractory Titanium Alloy Powder |
| CAS No. | 7440-32-6 |
| Appearance | Grey Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | TiTaNbZr |
| Density | 2.53g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-313/25 |
PREF Refractory Titanium Alloy Description:
PREF Refractory Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.PREF Refractory Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. PREP Refractory Titanium Alloy Powder TiAl is a new class of aerospace alloys that offers an excellent strength-to-weight ratio as well as high chemical and thermal stability. Gamma titanium aluminide alloy has excellent mechanical properties as well as oxidation and corrosion resistance at elevated temperatures (over 600 degrees Celsius). TiAl is the latest class of materials competing with Nickel superalloys for the fabrication of aircraft engine parts such as low-pressure turbine. Overview of PREP Refractory Titanium Alloy Powder PREP (Plasma Rotating Electrode Process) alloy is a high-performance refractory titanium alloy powder designed for additive manufacturing of components needing excellent mechanical properties at extreme temperatures. This article provides a comprehensive guide to PREP titanium alloy powder covering composition, properties, print parameters, applications, specifications, suppliers, handling, inspection, comparisons, pros and cons, and FAQs. Quantitative information is presented in easy-to-reference tables. Composition of PREP Titanium Alloy Powder PREP alloy has a complex composition containing various solute elements:| Element | Weight % | Purpose |
| Titanium | Balance | Principal matrix element |
| Aluminum | 5 – 7 | Solid solution strengthener |
| Tin | 1 – 3 | Solid solution strengthener |
| Zirconium | 0.5 – 2 | Grain structure control |
| Molybdenum | 1 – 3 | Solid solution strengthener |
| Silicon | 0.5 – 1.5 | Oxidation resistance |
| Niobium | 1 – 3 | Carbide former |
| Tantalum | 1 – 3 | Carbide former |
| Property | Description |
| High strength | Excellent tensile and creep strength up to 700°C |
| Fatigue resistance | High fatigue life at elevated temperatures |
| Fracture toughness | Up to 100 MPa-√m |
| Oxidation resistance | Forms protective oxide scale |
| Thermal stability | Microstructural stability after prolonged exposures |
| Damage tolerance | Resistant to crack growth |
| Biocompatibility | Non-toxic and non-allergenic |
| Parameter | Typical Value | Purpose |
| Layer height | 30-50 μm | Resolution versus build speed |
| Laser power | 150-500 W | Sufficient melting without evaporation |
| Scan speed | 750-1500 mm/s | Density versus production rate |
| Hatch spacing | 80-120 μm | Mechanical properties |
| Hot isostatic pressing | 900°C, 100 MPa, 3 hrs | Eliminate internal voids |
| Industry | Components |
| Aerospace | Turbine blades, compressor parts, mounts |
| Automotive | Connecting rods, valves, turbocharger wheels |
| Medical | Orthopedic implants, surgical tools |
| Chemical | Pumps, valves, reaction vessels |
| Power generation | Hot gas path components |
| Parameter | Specification |
| Particle size range | 15-45 μm typical |
| Particle shape | Spherical morphology |
| Apparent density | >2.5 g/cc |
| Tap density | >4.5 g/cc |
| Hall flow rate | >35 sec for 50 g |
| Purity | >99.95% |
| Oxygen content | <1000 ppm |
| Method | Parameters Tested |
| Sieve analysis | Particle size distribution |
| SEM imaging | Particle morphology |
| EDX | Chemistry/composition |
| XRD | Phases present |
| Pycnometry | Density |
| Hall flow rate | Powder flowability |
| Alloy | Strength | Oxidation Resistance | Cost | Printability |
| PREP | Excellent | Excellent | High | Good |
| Ti64 | Good | Good | Medium | Fair |
| Ti6242 | Excellent | Good | High | Fair |
| CP-Ti | Low | Excellent | Low | Excellent |
| Pros | Cons |
| Outstanding high temperature strength | Expensive compared to Ti64 and CP-Ti |
| Excellent thermomechanical fatigue resistance | Higher density than other titanium alloys |
| Complex geometries feasible | Controlled atmosphere handling mandatory |
| Lower anisotropy than Ti64 and CP-Ti | Processing very technique sensitive |
| Matching properties to PREP wrought forms | Limited suppliers and alloy variants |
TC18 Powder
TC18 Powder
| Product | TC18 Powder |
| CAS No. | N/A |
| Appearance | Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | TiC18 |
| Density | N/A |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-317/25 |
TC18 Description:
TC18 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.TC18 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. TC18 Powder : Unlocking the Power of Titanium Carbide TC18 powder refers to a fine powder composed of titanium carbide (TiC) particles. Titanium carbide, a hard ceramic compound, is renowned for its exceptional hardness, high melting point, and impressive resistance to wear and corrosion. TC18 powder is produced by finely grinding titanium carbide into a powdered form, allowing for its versatile utilization in numerous industries Properties Of TC18 Powder The properties of TC18 powder make it a highly sought-after material for various applications. Some key properties include: High Hardness: TC18 powder exhibits exceptional hardness, comparable to that of diamonds, making it ideal for wear-resistant applications. Excellent Thermal Stability: With a high melting point of approximately 3140°C (5675°F), TC18 powder can withstand extreme temperatures without significant degradation. Superior Corrosion Resistance: TC18 powder possesses impressive resistance to corrosion, making it suitable for applications in harsh environments. Good Electrical Conductivity: Despite being a ceramic material, TC18 powder exhibits good electrical conductivity, enabling its use in electronic applications. Low Density: TC18 powder has a relatively low density, which contributes to its lightweight nature and potential applications in aerospace and automotive industries. Applications Of TC18 Powder The versatile nature of TC18 powder allows for its application across diverse industries. Some notable applications include: Cutting Tools and Inserts: TC18 powder is widely used in the manufacturing of cutting tools and inserts due to its exceptional hardness and wear resistance. Wear-Resistant Coatings: TC18 powder is employed in the creation of wear-resistant coatings, enhancing the durability and lifespan of various components. Additive Manufacturing: TC18 powder finds use in additive manufacturing processes, such as 3D printing, to create high-strength, complex structures. Electronics: The good electrical conductivity of TC18 powder makes it valuable for electronic applications, including electrical contacts and circuit boards. Aerospace and Automotive Industries: TC18 powder is utilized in the aerospace and automotive sectors for its lightweight nature and ability to withstand high temperatures and corrosive environments. Advantages Of TC18 Powder The utilization of TC18 powder offers several advantages, including: Enhanced Durability: TC18 powder’s high hardness and wear resistance enhance the durability and lifespan of components in various applications. Improved Performance: By utilizing TC18 powder, manufacturers can achieve improved performance in cutting tools, coatings, and electronic components. Lightweight Design: TC18 powder’s low density contributes to lightweight designs in aerospace and automotive industries, enabling fuel efficiency and increased payload capacity. Cost Savings: The enhanced durability and performance of TC18 powder can lead to cost savings by reducing maintenance and replacement costs. Environmental Benefits: TC18 powder’s corrosion resistance and longevity contribute to a reduction in waste and environmental impact. Production And Manufacturing Process Of TC18 Powder The production of TC18 powder involves several stages, including: Raw Material Preparation: Pure titanium and carbon source materials are selected and processed to obtain a suitable mixture for reaction. Reaction Stage: The prepared mixture undergoes a high-temperature reaction, typically through carbothermic reduction, resulting in the formation of titanium carbide. Powderization: The synthesized titanium carbide is then mechanically ground into a fine powder, resulting in TC18 powder. Quality Control and Testing: Rigorous quality control measures are implemented to ensure the desired particle size, purity, and consistency of the TC18 powder. Quality Control Measures To maintain the quality and integrity of TC18 powder, strict quality control measures are employed throughout the production process. These measures include: Particle Size Analysis: Ensuring the powder meets the required size specifications for specific applications. Chemical Composition Testing: Verifying the purity and elemental composition of TC18 powder to meet industry standards. Microstructural Analysis: Examining the microstructure of TC18 powder to assess its homogeneity and ensure consistent quality. Physical Property Evaluation: Conducting tests to evaluate properties such as hardness, thermal stability, and electrical conductivity. Future Prospects Of TC18 Powder With its remarkable properties and versatile applications, TC18 powder holds immense potential for future advancements. Ongoing research and development efforts aim to further optimize its properties, expand its range of applications, and explore new industries that can benefit from this innovative material. FAQs What is TC18 powder? TC18 powder refers to a fine powdered form of titanium carbide, a hard ceramic compound known for its exceptional properties. What are the applications of TC18 powder? TC18 powder finds application in cutting tools, wear-resistant coatings, additive manufacturing, electronics, and industries requiring lightweight, corrosion-resistant materials. What are the advantages of using TC18 powder? Utilizing TC18 powder offers advantages such as enhanced durability, improved performance, lightweight design, cost savings, and environmental benefits. How is TC18 powder produced? TC18 powder is produced through a process involving the reaction of titanium and carbon source materials, followed by mechanical grinding into a fine powder. What does the future hold for TC18 powder? Ongoing research and development aim to optimize TC18 powder’s properties, expand its applications, and explore new industries that can benefit from its remarkable properties.TC4 ELI Powder
TC4 ELI Powder
| Product | TC4 ELIÂ Powder |
| CAS No. | 7440-32-6 |
| Appearance | Fine Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ti-Al-V |
| Density | 4.43g/mol |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-318/25 |
TC4 ELI Description:
TC4 ELI Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.TC4 ELI Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. TC4 ELI Powder TC4 ELI powder is a titanium alloy known for its exceptional mechanical properties and biocompatibility. It is a variant of Ti-6Al-4V alloy, specifically developed for critical applications in industries such as aerospace, medical, automotive, and sports equipment manufacturing. TC4 ELI powder exhibits enhanced purity and reduced interstitial elements, making it highly desirable for various advanced applications. TC4 ELI powder, also known as Titanium 6Aluminum 4Vanadium ELI powder, is an advanced titanium alloy powder used in various high-performance applications. This guide provides a comprehensive overview of TC4 ELI powder, its properties, applications, suppliers, grades, and comparisons to other titanium powders. Overview of TC4 ELI Powder TC4 ELI powder is a high-purity extra low interstitial (ELI) variant of TC4 titanium alloy containing 6% aluminum, 4% vanadium, and low amounts of iron and oxygen. Compared to other titanium alloys, TC4 ELI offers an excellent combination of high strength, low weight, outstanding corrosion resistance, and biocompatibility. The ELI grade ensures maximum ductility and toughness. TC4 ELI is suitable for additive manufacturing, metal injection molding, and other powder metallurgy applications. Its fine powders enable complex geometries and thin walls in 3D printed or sintered parts. Key properties and characteristics of TC4 ELI powder: TC4 ELI Powder Properties| Property | Description |
| Composition | 6% Al, 4% V, 0.08% max Fe, 0.13% max O |
| Density | 4.43 g/cc |
| Melting Point | 1604°C |
| Strength | 895-930 MPa ultimate tensile strength |
| Ductility | 10-15% elongation |
| Fatigue Strength | 500-550 MPa |
| Young’s Modulus | 110 GPa |
| Thermal Conductivity | 6.7 W/m-K |
| Electrical Resistivity | 178 μΩ-cm |
| Coefficient of Thermal Expansion | 8.9 μm/m-°C |
| Area | Applications |
| Aerospace | Aircraft structures, engine components, space launch systems |
| Implants | Orthopedic implants, dental implants, maxillofacial implants |
| Automotive | Motorsports components, turbocharger wheels |
| Industrial | Marine hardware, offshore drilling parts, valves, pumps |
| Energy | Wellhead components, downhole tools, pipelines |
| Defense | Ballistic armor, weapon components, protective gear |
| Parameter | Details |
| Particle Size Range | 15-45 microns, 45-105 microns, 105-250 microns |
| Particle Shape | Spherical, angular, blended |
| Size Distribution | D10, D50, D90 values |
| Apparent Density | 2.5-3.5 g/cc |
| Tap Density | 3.5-4.5 g/cc |
| Flow Rate | Hall flowmeter measurement |
| Chemical Analysis | Al, V, Fe, O, N, C, H, Ti |
| Lot Number | For traceability |
| Packaging | Vials, jars up to 25 kg |
| Grade | Description |
| As-atomized | No post-processing after gas atomization |
| Annealed | Heat treated to relieve residual stresses |
| Hot isostatic pressed | Consolidated at high temperature and pressure |
| Plasma sintered | Rapidly sintered using plasma discharge |
| ISO-S | Spherical powder made by gas atomization |
| Alloy | Strength | Toughness | Corrosion Resistance | Cost |
| Ti-6Al-4V | Medium | Medium | Medium | Low |
| Ti-6Al-7Nb | Medium | Medium | High | Medium |
| Ti-555 (Ti-5Al-5V-5Mo-3Cr) | Very High | Low | Medium | High |
| TC4 ELI (Ti-6Al-4V-0.08Fe-0.13O) | Very High | High | Very High | High |
Ti45NB Powder
Ti45NB Powder
| Product | Ti45NB Powder |
| CAS No. | 7440-32-6 |
| Appearance | Metallic Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ti55Nb45 |
| Density | 5.7g/cm3 |
| Molecular Weight | 140.733g/mol |
| Product Codes | NCZ-DCY-320/25 |
Ti45NB Description:
Ti45NB Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.Ti45NB Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Ti45Nb Powder for Additive Manufacturing Ti45Nb powder, a marvel of material science, is making waves in the realm of additive manufacturing.| Metal Powder | Size | Quantity | Price/kg |
| Ti45Nb | 15-45um | 30KG | 499 |
| Property | Description |
| Composition | 55% Ti, 45% Nb (nominal) |
| Density | ~6.0 g/cm³ |
| Melting Point | ~3000°C |
| Strength | Medium range |
| Elastic Modulus | 40% lower than commercially pure titanium |
| Biocompatibility | Excellent |
| Corrosion Resistance | Outstanding |
| Application | Description |
| Aerospace:Â Lightweight, high-strength components for aircraft, spacecraft, and satellite structures. | |
| Biomedical:Â Biocompatible implants for knees, hips, and other joints, as well as dental implants and surgical instruments. | |
| Chemical Processing:Â Corrosion-resistant components for pumps, valves, and other equipment exposed to aggressive chemicals. | |
| Oil and Gas:Â High-pressure and high-temperature components for drilling equipment and downhole tools. | |
| Consumer Products:Â High-performance sporting goods like bicycle frames and golf clubs. |
| Specification | Description |
| Particle Size:Â Typically ranges from 15 to 45 microns, with customized options available for specific applications. | |
| Grade:Â Available in various grades depending on the desired level of purity and oxygen content. | |
| Standards:Â Conforms to industry standards like ASTM F3056 for additive manufacturing powders. |
TiNb Alloy Powder
TiNb Alloy Powder
| Product | TiNb Alloy Powder |
| CAS No. | 12010-55-8 |
| Appearance | Gray-Silver Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ti-Nb |
| Density | 4.5-5.5g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-322/25 |
TiNb Alloy Description:
TiNb Alloy Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.TiNb Alloy Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. TiNb Alloy Powder Titanium niobium (TiNb) alloy powder is an advanced material with excellent properties for use in biomedical, aerospace, automotive and other demanding applications. This article provides a comprehensive guide to TiNb alloy powder covering composition, properties, processing, applications, specifications, suppliers, costs, handling and more. Introduction to TiNb Alloy Powder TiNb alloy powder is composed of titanium and niobium metals. It offers a unique combination of high strength, low density, biocompatibility, corrosion resistance, fatigue and creep resistance at high temperatures. TiNb alloys are part of a broader class of titanium intermetallic materials that have superior physical, chemical and mechanical properties compared to pure titanium. The addition of niobium as an alloying element enhances certain properties and allows tailoring TiNb alloys for specific applications. Some key advantages of TiNb alloy powder include: High strength-to-weight ratio Ability to withstand extreme temperatures and stresses Resists wear, abrasion and corrosion in harsh environments Biocompatible and non-toxic for medical uses Can be processed into complex shapes using additive manufacturing Provides design flexibility for engineers TiNb alloys compete with nickel and cobalt-based superalloys in the aerospace industry. They also offer an alternative to stainless steels for biomedical implants and devices. TiNb alloys are enabling new applications and designs not possible with other materials. This article provides a technical reference covering the composition, properties, processing, applications, specifications, costs and other practical aspects of TiNb alloy powder. TiNb Alloy Powder Composition TiNb alloys contain primarily titanium and niobium as the key constituent elements. The niobium content typically ranges from 10% to 50% by weight, with the balance being titanium. The ratio of Ti to Nb can be adjusted to create different grades of TiNb alloys optimized for certain properties. Some common TiNb grades include: Ti-10Nb – 10% niobium, 90% titanium Ti-35Nb – 35% niobium, 65% titanium Ti-45Nb – 45% niobium, 55% titanium Ti-50Nb – 50% niobium, 50% titanium Additionally, small amounts of other elements like zirconium, tantalum, molybdenum, chromium may be added to further enhance properties. Oxygen and nitrogen may also be present as impurities. Table 1: Chemical composition of common TiNb alloy grades| Alloy Grade | Niobium Content | Titanium Content |
| Ti-10Nb | 10% | 90% |
| Ti-35Nb | 35% | 65% |
| Ti-45Nb | 45% | 55% |
| Ti-50Nb | 50% | 50% |
| Property | Value |
| Density | 5.2 g/cm3 |
| Melting point | 1600°C |
| Tensile strength | 650 MPa |
| Yield strength | 550 MPa |
| Elongation | 15% |
| Elastic modulus | 60 GPa |
| Hardness | 250 HV |
| Industry | Applications |
| Aerospace | Engine components, airframe parts, hydraulic systems |
| Automotive | Valve springs, engine valves, connecting rods |
| Biomedical | Implants, dental, surgical instruments, devices |
| Chemical | Heat exchangers, reactors, pumps, valves |
| Other | Sporting goods, watches, electrical contacts, furnace parts |
| Method | Description | Particle Size | Morphology |
| Mechanical alloying | Blending and milling Ti and Nb powders | 10 – 50 microns | Irregular, angular |
| Gas atomization | Inert gas atomization of molten alloy | 15 – 150 microns | Spherical |
| Plasma rotating electrode | Centrifugal disintegration of melted electrode | 50 – 150 microns | Spherical |
| HDH process | Hydriding, dehydriding, crushing blended powders | 10 – 63 microns | Irregular, angular |
| Method | Description | Density | Microstructure | Geometry |
| HIP | High pressure, high temperature | Near full density | Fine | Simple shapes |
| Vacuum sintering | Sintering in vacuum furnace | Near full density | Fine | Simple shapes |
| Spark plasma sintering | Pulsed current and pressure | Full density | Ultrafine | Simple shapes |
| Metal injection molding | Powder + binder molding | Near full density | Ultrafine | Complex shapes |
| Additive manufacturing | Powder bed fusion or directed energy deposition | Near full density | Coarse | Complex shapes |
| Parameter | Specification |
| Alloy composition | Ti-35Nb |
| Particle size | 15 to 45 microns |
| Morphology | Spherical |
| Production method | Gas atomization |
| Purity | Ti >99.5%, Nb >99.8% |
| Oxygen content | <1500 ppm |
| Flow rate | >38 sec/50g |
| Apparent density | ≥ 2.7 g/cc |
| Tap density | ≥ 4.2 g/cc |
| Parameter | Guidelines |
| Storage | Sealed containers, dry inert atmosphere |
| Atmosphere | Avoid oxygen, moisture, oils, combustibles |
| Equipment | Ground all conductive equipment |
| Tools | Use non-sparking tools |
| Ventilation | Grounded ventilation system |
| PPE | Gloves, respiratory protection |
| Precautions | Avoid heat, flames, sparks |
| Shelf life | 12 months in inert atmosphere |
| Safety Item | Precautions |
| PPE | Gloves, goggles, N95 mask |
| Inhalation | Use respiratory protection |
| Skin contact | Wash affected area with soap and water |
| Eye contact | Flush eyes with water for 15 minutes |
| Ingestion | Drink water. Get medical help if needed. |
| Ventilation | Use grounded ventilation hoods |
| Grounding | Ground all equipment during handling |
| Ignition | Avoid sparks, flames, heat sources |
| Storage | Inert atmosphere away from flammable materials |
| Test | Method | Standard |
| Composition | ICP, GDMS, LECO | ASTM E1479, ASTM E2330 |
| Particle size distribution | Laser diffraction, sieving | ASTM B822 |
| Morphology | SEM imaging | ASTM B822 |
| Flow rate | Hall flow meter | ASTM B213 |
| Density | Scott volumeter | ASTM B212 |
| Oxygen/Nitrogen | Inert gas fusion | ASTM E1019 |
| Phase analysis | X-ray diffraction | ASTM E1876 |
TiNbZrSn Alloy Powder
TiNbZrSn Alloy Powder
| Product | TiNbZrSn Alloy Powder |
| CAS No. | N/A |
| Appearance | Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | ZrTi |
| Density | 6.5g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-323/25 |
TiNbZrSn Alloy Description:
TiNb Alloy Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.TiNbZrSn Alloy Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. TiNbZrSn Alloy Powder TiNbZrSn alloy powder is an advanced composite material with exceptional properties making it suitable for a wide range of demanding applications. This article provides a comprehensive overview of TiNbZrSn powder including its composition, characteristics, production methods, applications, suppliers, and more. TiNbZrSn Alloy Powder Composition TiNbZrSn alloy powder consists of the following elements:| Element | Weight % |
| Titanium (Ti) | 35-40% |
| Niobium (Nb) | 35-40% |
| Zirconium (Zr) | 5-10% |
| Tin (Sn) | 5-10% |
| Property | Description |
| High strength | Yields strength over 1400 MPa, on par with advanced aerospace alloys |
| Low density | Density around 6.5 g/cm3, much lower than steel |
| Excellent elasticity | Young’s modulus around 100 GPa, enabling flexibility |
| High hardness | Vickers hardness over 450 HV, better abrasion resistance than stainless steel |
| Good corrosion resistance | Resists corrosion in harsh environments |
| Biocompatibility | Non-toxic and suitable for medical implants |
| High melting point | Melting above 2500°C making it viable for high temperature applications |
| Method | Description |
| Gas atomization | Molten alloy sprayed into fine droplets which solidify into powder |
| Plasma rotating electrode process (PREP) | Electrode rotates rapidly in plasma arc to disintegrate into powder |
| Hydride-dehydride (HDH) | Alloy is hydrogenated, mechanically crushed into powder, then de-hydrogenated |
| Industry | Application |
| Aerospace | Aircraft and rocket engine components, space systems |
| Automotive | Valve springs, fasteners, actuators |
| Medical | Implants, prosthetics, devices |
| Defense | Armor, munitions, ballistics |
| Additive manufacturing | 3D printed parts with high strength |
| Chemical processing | Corrosion resistant vessels, piping |
| Attribute | Details |
| Particle sizes | 15-45 microns, 45-106 microns, 106-250 microns |
| Particle shape | Spherical, irregular |
| Purity | Up to 99.9% |
| Oxygen content | Under 2000 ppm |
| Powder grades | Grade 5, 23, 23 ELI |
| Supply form | Loose powder, sintered preforms |
| Parameter | Method | Acceptance Criteria |
| Particle size distribution | Laser diffraction, sieving | Meets specified range |
| Particle shape | SEM imaging | Spherical, smooth surfaces |
| Particle chemistry | EDX/EDS, ICP-OES | Conforms to specified composition |
| Oxygen/nitrogen | Inert gas fusion | Under 2000 ppm oxygen |
| Apparent density | Hall flowmeter | Better flow for higher density |
| Flow rate | Hall flowmeter | Flows freely through aperture |
| Test | Method | Purpose |
| Compressibility | Uniaxial pressing | Assess compaction response |
| Green strength | Transverse rupture strength | Measure strength before sintering |
| Density after sintering | Dimensional measurement | Ensure full consolidation |
| Microstructure | Optical microscopy, SEM | Assess melting, porosity, grains |
| Hardness | Vickers/Rockwell tests | Verify mechanical properties |
| Tensile strength | ASTM E8 | Measure UTS, yield, elongation |
| Advantages | Disadvantages |
| Exceptional strength-to-weight ratio | Expensive compared to common alloys |
| Higher elasticity than other high-strength alloys | Lower ductility than titanium alloys |
| Excellent hardness and wear resistance | Requires careful handling due to reactivity |
| Resists corrosion in harsh environments | Difficult to machine and grind |
| Biocompatible for medical uses | Limited suppliers and availability |
| Withstands extremely high temperatures | Needs hot isostatic pressing for full consolidation |
Titanium And Aluminum TA7 Powder
Titanium And Aluminum TA7 Powder
| Product | Titanium And Aluminum TA7 Powder |
| CAS No. | 7440-32-6 |
| Appearance | Gray or Metallic Silver |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ti-Al |
| Density | 3.7-4.0g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-324/25 |
Titanium And Aluminum TA7 Description:
TTitanium And Aluminum TA7 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.Titanium And Aluminum TA7 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Titanium and aluminum TA7 powder TA7 powder belongs to the family of titanium aluminides, which are intermetallic compounds composed of titanium and aluminum. This unique powder exhibits exceptional strength, lightweight characteristics, and high-temperature stability, making it an attractive choice for numerous engineering applications. Overview of Titanium and Aluminum TA7 Powder TA7 belongs to the titanium-aluminide intermetallic alloy system combining the lightweight properties of aluminum with the strength and corrosion resistance of titanium. The near-equiatomic ratio of Ti and Al provides an excellent balance of properties for elevated temperature applications. Key characteristics of TA7 powder include: Very high specific strength (strength-to-weight ratio) Excellent high temperature tensile and creep strength Low density compared to nickel or steel alloys Good corrosion resistance in various environments Available in range of particle sizes and morphologies TA7 powder has emerged as an excellent choice for reducing weight and improving efficiency in aerospace engines and airframes operating at high temperatures. Chemical Composition of TA7 Powder TA7 powder has the following nominal composition:| Element | Weight % |
| Titanium (Ti) | Balance |
| Aluminum (Al) | 7% |
| Tin (Sn) | 2-5% |
| Zirconium (Zr) | 1-4% |
| Silicon (Si) | 0.5% max |
| Carbon (C) | 0.1% max |
| Oxygen (O) | 0.13% max |
| Property | Value |
| Density | 3.7-4.0 g/cm3 |
| Melting Point | 1460°C |
| Thermal Conductivity | 6.7 W/mK |
| Electrical Resistivity | 1.78 μΩ.cm |
| Young’s Modulus | 110 GPa |
| Poisson’s Ratio | 0.32 |
| Tensile Strength | 800 MPa |
| Yield Strength | 760 MPa |
| Elongation | 1-2% |
| Creep Resistance | 190 MPa at 700°C |
| Parameter | TA7 | Inconel 718 |
| Density | 3.7-4.0 g/cm3 | 8.2 g/cm3 |
| High temperature strength | Comparable | Comparable |
| Oxidation resistance | Better | Good |
| Cost | Higher | Lower |
| Workability | Poor | Excellent |
| Applications | Aerospace components | Aerospace, automotive |
| Availability | Low | Readily available |

Reviews
There are no reviews yet.