317L Powder

$0.00

317L Powder

Product 317L Powder
CAS No. 12597-68-1
Appearance Metallic Gray Powder
Purity ≥99%,  ≥99.9%,  ≥95%(Other purities are also available)
APS 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range.
Ingredient Fe-18Cr-12Ni-3Mo
Density 7.9g/cm3
Molecular Weight N/A
Product Codes NCZ-DCY-341/25

317L Description:

317L Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.

317L Powder Related Information:

Storage Conditions: 

Airtight sealed, avoid light and keep dry at room temperature.

Please contact us for customization and price inquiry

Email: contact@nanochemazone.com

Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.

317L Powder

317L powder is an austenitic stainless steel powder containing 18% chromium, 3% molybdenum, and 0.08% carbon. It offers an excellent combination of corrosion resistance, strength, weldability and cost.

Overview of 317L Powder

317L powder is an austenitic stainless steel powder containing 18% chromium, 3% molybdenum, and 0.08% carbon. It offers an excellent combination of corrosion resistance, strength, weldability and cost.

Key properties and advantages of 317L powder include:

Properties Details
Composition Fe-18Cr-3Mo-0.08C alloy
Density 8.0 g/cc
Particle shape Irregular, angular
Size range 10-150 microns
Apparent density Up to 50% of true density
Flowability Moderate
Corrosion resistance Excellent in many environments
Strengthening Cold working and solid solution strengthening

317L powder is widely used in chemical processing, marine applications, pulp and paper industry, nuclear power generation, and architectural features needing weathering resistance.

317L Powder Composition

Element Weight %
Iron (Fe) Balance
Chromium (Cr) 17-19%
Nickel (Ni) 11-15%
Molybdenum (Mo) 2.5-3.5%
Manganese (Mn) <2%
Carbon (C) 0.08% max
Silicon (Si) 1% max
Nitrogen (N) 0.10% max
Sulfur (S) 0.03% max

Iron provides the ferritic matrix and ductility

Chromium enhances corrosion and oxidation resistance

Nickel stabilizes the austenitic structure

Molybdenum further improves pitting resistance

Carbon, nitrogen and sulfur controlled as tramp elements

317L Powder Physical Properties

Property Values
Density 8.0 g/cc
Melting point 1370-1400°C
Electrical resistivity 0.8 μΩ-m
Thermal conductivity 16 W/mK
Thermal expansion 16 x 10^-6 /K
Maximum service temperature 900°C

High density compared to ferritic stainless steels

Maintains strength and corrosion resistance at elevated temperatures

Resistivity higher than pure iron or carbon steels

Lower thermal conductivity than carbon steel

Can withstand continuous service up to 900°C

The physical properties make 317L suitable for high temperature applications requiring corrosion resistance.

317L Powder Mechanical Properties

Property Values
Tensile strength 515-620 MPa
Yield strength 205-275 MPa
Elongation 40-50%
Hardness 88-95 HRB
Impact strength 100-150 J
Modulus of elasticity 190-210 GPa

Excellent combination of strength and ductility

Can be work hardened significantly to increase strength

Very high toughness and impact strength

Strength can be further improved through cold working

Hardness is relatively low in annealed condition

The properties provide an excellent balance of strength, ductility and toughness required for many corrosive environments.

317L Powder Applications

Industry Example Uses
Chemical Tanks, valves, pipes, pumps
Petrochemical Process equipment, tubing, valves
Marine Propeller shafts, fasteners, deck hardware
Nuclear Reactor vessels, fuel element cladding
Architectural Railings, wall panels, roofing

Some specific product uses:

Pollution control equipment handling hot acids

Nuclear reactor internal structures

Marine propeller shafts, deck fittings

Pulp and paper industry piping, valves

Architectural paneling, roofing, cladding

Its excellent corrosion resistance combined with good manufacturability make 317L widely used across demanding industries.

317L Powder Standards

Standard Description
ASTM A276 Standard for stainless steel bars and shapes
ASTM A479 Standard for stainless steel tubing
AMS 5524 Annealed stainless steel bar, wire, forgings
ASME SA-276 Specification for stainless steel bars and shapes
AISI 630 Standard for 17Cr-4Ni precipitation hardening stainless steel

These standards define:

Chemical composition limits of 317L alloy

Permissible impurity levels like S, P

Required mechanical properties

Approved production methods

Compliance testing protocols

Proper packaging, labeling and documentation

Meeting certification requirements ensures suitability of the powder for the intended applications.

317L Powder Particle Sizes

Particle Size Characteristics
10-45 microns Ultrafine grade for high density and surface finish
45-150 microns Coarse grade provides good flowability
15-150 microns Standard grade for pressing and sintering

Finer particles allow greater densification during sintering

Coarser powder flows better and fills die cavities uniformly

Size range is tailored based on final part properties needed

Both gas and water atomized powders are available

Controlling particle size distribution allows optimizing processing behavior and final part performance.

317L Powder Apparent Density

Apparent Density Details
Up to 50% of true density For irregular powder morphology
4.5-5.5 g/cc typical Improves with greater packing density

Higher apparent density improves powder flow and compressibility

Irregular morphology limits maximum packing density

Values up to 60% are possible with spherical powder

High apparent density improves press filling efficiency

Higher apparent density leads to better manufacturing productivity and part quality.

317L Powder Production Method

Method Details
Gas atomization High pressure inert gas breaks molten metal stream into fine droplets
Water atomization High pressure water jet breaks metal into fine particles
Vacuum induction melting High purity input materials melted under vacuum
Multiple remelting Improves chemical homogenization
Sieving Classifies powder into different particle size ranges

Gas atomization provides clean, spherical powder morphology

Water atomization is a lower cost process with irregular particles

Vacuum melting and remelting minimizes gaseous impurities

Post-processing allows customization of particle sizes

Automated production and stringent quality control result in consistent powder suitable for critical applications.

317L Powder Handling and Storage

Recommendation Reason
Use PPE and ventilation Avoid exposure to fine metallic particles
Ensure proper grounding Prevent static discharge while handling
Avoid ignition sources Powder can combust in oxygen atmosphere
Use non-sparking tools Prevent possibility of ignition
Follow safety protocols Reduce risk of burns, inhalation, ingestion
Store in stable containers Prevent contamination or oxidation

As 317L powder is flammable, ignition and explosion risks should be controlled during handling and storage. Otherwise it is relatively safe with proper precautions.

317L Powder Inspection and Testing

Test Details
Chemical analysis ICP and XRF verify composition
Particle size distribution Laser diffraction determines size distribution
Apparent density Hall flowmeter test per ASTM B212 standard
Powder morphology SEM imaging shows particle shape
Flow rate analysis Gravity flow rate through specified nozzle
Loss on ignition Determines residual moisture content

Stringent testing ensures the powder meets the required chemical purity, particle characteristics, density, morphology, and flowability per applicable specifications.

317L Powder Pros and Cons

Advantages of 317L Powder

Excellent corrosion resistance in many environments

High temperature strength and oxidation resistance

Good ductility, toughness and weldability

More cost-effective than high nickel austenitic grades

Readily formable using conventional techniques

Can be work hardened through cold/warm working

Disadvantages of 317L Powder

Lower high temperature creep strength than some ferritic grades

Lower hardness and wear resistance than martensitic grades

Susceptible to chloride stress corrosion cracking

Requires post weld annealing to prevent sensitization

Limited cold heading and forming capability

Surface discoloration over time in outdoor exposure

Comparison With 316L Powder

317L vs 316L Stainless Steel Powder

Parameter 317L 316L
Density 8.0 g/cc 8.0 g/cc
Strength 515-620 MPa 485-550 MPa
Corrosion resistance Excellent Outstanding
Pitting resistance Very good Excellent
Cost Low High
Uses Process industry, marine Chemical, pharmaceutical

317L provides higher strength at lower cost

316L offers better pitting corrosion resistance

317L has good chloride stress corrosion resistance

316L preferred for ultra-corrosive environments

317L suited for marine applications and nuclear industry

317L Powder FAQs

Q: What are the main applications of 317L stainless steel powder?

A: Main applications include chemical processing, petrochemical, marine, nuclear, pulp & paper, and architectural. It is used for equipment like tanks, valves, pipes, pumps, shafts, and cladding.

Q: What precautions should be taken when handling 317L powder?

A: Recommended precautions include ventilation, grounding, avoiding ignition sources, using non-sparking tools, protective gear, safe storage, and controlling dust exposure.

Q: How does molybdenum improve the corrosion resistance of 317L?

A: Molybdenum enhances pitting and crevice corrosion resistance in chloride environments. It stabilizes the passive film protecting the surface.

Q: What is the main difference between 304L and 317L stainless steel powder?

A: 317L contains 3% molybdenum giving it significantly better corrosion resistance compared to 304L, especially in marine and other chloride environments.

Description

Description
Note: For pricing & ordering information, please get in touch with us at sales@nanochemazone.com
Please contact us for quotes on Larger Quantities and customization. E-mail: contact@nanochemazone.com

Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.

NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at sales@nanochemazone.com or by phone at (+1 780 612 4177) if you have any 

Reviews (0)

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shipping & Delivery