IN738LC Powder
$0.00
IN738LC Powder
| Product | IN738LC Powder |
| CAS No. | N/A |
| Appearance | Metallic Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ni-16Cr-8.5Co-2.4Al-3.4Ti-1.75Mo-1.75w-0.9Nb-0.6Zr-0.1C |
| Density | 8.11g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-203/25 |
INC738LC Description:
INC738LC Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing
INC738LC Powder Related Information :
Storage Conditions:
Airtight sealed, avoid light and keep dry at room temperature.
Please contact us for customization and price inquiry
Email: contact@nanochemazone.com
Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.
Best IN738LC powder for 3D printing in 2024
In738LC powder price list:
| Metal Powder | Size | Quantity | Price/kg | Size | Quantity | Price/kg |
| Inconel 738LC | 15-45μm | 1KG | $137.9 | 20-60μm | 1KG | $134 |
| 10KG | $109.8 | 10KG | $109 | |||
| 100KG | $99.7 | 100KG | $98 |
IN738LC is a nickel-based superalloy powder widely used in additive manufacturing, particularly for applications requiring high-temperature strength and corrosion resistance. This advanced material has gained significant traction in industries such as aerospace, energy, and automotive due to its exceptional properties and the ability to produce complex geometries through 3D printing processes like selective laser melting (SLM) and electron beam melting (EBM). In this article, we will delve into the intricacies of IN738LC powder, exploring its composition, characteristics, benefits, applications, printing processes, and key suppliers.
| Alloy | Nominal Composition (wt%) |
| IN738LC | Ni – 16Cr – 8.5Co – 3.4Al – 3.4Ti – 1.7Mo – 2.6W – 1.7Ta – 0.9Nb – 0.05C – 0.03Zr – 0.001B |
Characteristics of IN738LC Powder
| Property | Value |
| Density | 8.19 g/cm³ |
| Melting Range | 1260-1335°C |
| Yield Strength (at 650°C) | >758 MPa |
| Tensile Strength (at 650°C) | >1035 MPa |
| Elongation (at 650°C) | >12% |
| Grain Size | Fine-grained |
| Gamma Prime Phase | High volume fraction |
IN738LC powder exhibits exceptional high-temperature strength, creep resistance, and oxidation resistance due to its unique composition and microstructure. The presence of aluminum, titanium, and refractory elements like tungsten and tantalum contributes to the formation of a high volume fraction of gamma prime (γ’) precipitates, which are responsible for its superior mechanical properties at elevated temperatures.
Benefits of Using IN738LC Powder for 3D Printing
Additive manufacturing with IN738LC powder offers numerous benefits over traditional manufacturing methods, making it an attractive choice for various industries. Let’s explore some of the key advantages:
Design Flexibility: 3D printing allows for the production of complex geometries and intricate internal structures that would be challenging or impossible to manufacture using conventional methods. This design freedom enables the creation of optimized components with improved functionality and performance.
Weight Reduction: By leveraging the design flexibility of additive manufacturing, engineers can produce lightweight yet robust components with optimized topologies, resulting in significant weight savings, particularly in aerospace and automotive applications.
Rapid Prototyping: The ability to quickly produce prototypes and functional parts from IN738LC powder accelerates the product development cycle, enabling faster iterations and reducing time-to-market.
Material Efficiency: Additive manufacturing processes like SLM and EBM have higher material utilization rates compared to subtractive manufacturing methods, leading to less waste and improved resource efficiency.
Customization: 3D printing enables the production of customized components tailored to specific requirements, making it ideal for applications with low-volume or unique demands.
Repair and Remanufacturing: IN738LC powder can be used to repair or remanufacture worn or damaged components, extending their service life and reducing replacement costs.
Applications of IN738LC Powder in 3D Printing
| Application | Industry | Examples |
| Turbine Components | Aerospace, Energy | Blades, Vanes, Nozzles |
| Automotive Components | Automotive | Turbochargers, Exhaust Manifolds |
| Tooling and Molds | Manufacturing | Injection Molds, Die Casting Molds |
| Heat Exchangers | Energy, Chemical | High-Temperature Recuperators |
| Medical Implants | Healthcare | Orthopedic Implants, Dental Restorations |
The exceptional high-temperature properties and corrosion resistance of IN738LC make it suitable for a wide range of applications across various industries. In the aerospace and energy sectors, this superalloy is widely used for producing turbine components, such as blades, vanes, and nozzles, which are subject to extreme temperatures and high stresses. The automotive industry also benefits from IN738LC powder in the manufacturing of turbochargers and exhaust manifolds.
Additionally, IN738LC powder finds applications in tooling and mold making, where its high strength and wear resistance are invaluable. Heat exchangers and recuperators in the energy and chemical industries also utilize this material due to its ability to withstand elevated temperatures and corrosive environments. Moreover, the biocompatibility of IN738LC makes it a promising candidate for medical implants and dental restorations.
3D Printing Processes for IN738LC Powder
Additive manufacturing processes compatible with IN738LC powder include selective laser melting (SLM) and electron beam melting (EBM). These powder bed fusion techniques offer excellent control over the microstructure and properties of the final component.
Selective Laser Melting (SLM): In the SLM process, a high-powered laser selectively melts and fuses the IN738LC powder layer by layer, according to the 3D model data. The build chamber is typically filled with an inert gas, such as argon or nitrogen, to prevent oxidation and maintain the desired material properties.
Electron Beam Melting (EBM): EBM utilizes a focused electron beam to selectively melt the IN738LC powder in a vacuum environment. This process allows for higher build rates and can produce parts with excellent mechanical properties and reduced residual stresses.
Both SLM and EBM processes require careful control of process parameters, such as laser or electron beam power, scan speed, hatch spacing, and layer thickness, to ensure optimal densification, microstructure, and mechanical properties of the final component.
To achieve the desired properties, post-processing steps like stress relief heat treatments, hot isostatic pressing (HIP), and surface finishing may be necessary, depending on the application requirements.
| Powder Specifications |
| Particle Size Distribution: 15-53 μm |
| Flowability: Excellent |
| Sphericity: High |
| Apparent Density: 4.2-4.6 g/cm³ |
| Standards: AMS 5832, AMS 5385 |
| Typical Grades |
| IN738LC – Standard Grade |
| IN738LC-LG – Low Gauge Grade |
| IN738LC-HG – High Gauge Grade |
Pros and Cons of Using IN738LC Powder for 3D Printing
| Pros | Cons |
| Excellent high-temperature strength and creep resistance | Higher material cost compared to some other alloys |
| Superior oxidation and corrosion resistance | Potential for cracking and distortion during printing |
| Ability to produce complex geometries | Strict process control required for optimal properties |
| Lightweight and high strength-to-weight ratio | Limited availability of qualified suppliers |
Advantages of IN738LC Powder for 3D Printing
When compared to traditional manufacturing methods, additive manufacturing with IN738LC powder offers several distinct advantages:
Design Optimization: The ability to produce complex geometries and internal features enables the design of components with optimized topologies, leading to weight reduction and improved performance. For instance, in the aerospace industry, lightweight yet strong turbine blades can be created, resulting in increased fuel efficiency and reduced emissions.
Rapid Prototyping and Iteration: The additive manufacturing process allows for rapid prototyping and iterative design cycles, significantly shortening the product development timeline. This advantage is particularly valuable in industries with stringent testing and certification requirements, such as aerospace and automotive.
Customization and Personalization: 3D printing with IN738LC powder enables the production of customized or patient-specific components, catering to unique requirements in fields like medical implants, tooling, and specialized industrial applications.
Material Efficiency and Waste Reduction: Additive manufacturing processes have higher material utilization rates compared to subtractive methods, resulting in less waste and improved resource efficiency. This not only reduces material costs but also contributes to a more sustainable manufacturing approach.
Repair and Remanufacturing: IN738LC powder can be used to repair or remanufacture worn or damaged components, extending their service life and reducing replacement costs. This capability is particularly beneficial in industries with high-value assets, such as aerospace and energy.
While additive manufacturing with IN738LC powder offers numerous advantages, it is essential to consider potential limitations and challenges. Process control, post-processing requirements, and the availability of qualified suppliers can impact the overall feasibility and cost-effectiveness of using this material for specific applications.
Limitations of IN738LC Powder for 3D Printing
Despite its numerous benefits, using IN738LC powder for 3D printing also presents some limitations and challenges:
Higher Material Cost: Nickel-based superalloys like IN738LC are generally more expensive compared to some other alloys used in additive manufacturing, which can increase the overall cost of production.
Strict Process Control: Achieving optimal mechanical properties and part quality with IN738LC powder requires precise control over various process parameters, such as laser or electron beam power, scan speed, hatch spacing, and layer thickness. Deviations from the optimal parameters can lead to defects or suboptimal performance.
Potential for Cracking and Distortion: Due to the high thermal gradients and residual stresses involved in the additive manufacturing process, IN738LC components can be susceptible to cracking and distortion. Careful design, process optimization, and post-processing techniques like stress relief heat treatments and hot isostatic pressing (HIP) may be necessary to mitigate these issues.
Limited Availability of Qualified Suppliers: While several suppliers offer IN738LC powder, the number of qualified and experienced suppliers may be limited compared to more widely used materials. This can impact the availability, lead times, and pricing of the powder.
Post-Processing Requirements: Depending on the application and performance requirements, post-processing steps like hot isostatic pressing (HIP), heat treatments, and surface finishing may be necessary to achieve the desired mechanical properties and surface quality. These additional steps can increase the overall cost and lead time.
It is crucial to carefully evaluate the specific requirements of your application, weighing the advantages and limitations of using IN738LC powder for 3D printing. Collaboration with experienced suppliers, process optimization, and a thorough understanding of the material’s behavior during additive manufacturing are essential for successful implementation.
Description
Note: For pricing & ordering information, please get in touch with us at sales@nanochemazone.com
Please contact us for quotes on Larger Quantities and customization. E-mail: contact@nanochemazone.com
Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.
NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at sales@nanochemazone.com or by phone at (+1 780 612 4177) if you have any questions.
Only logged in customers who have purchased this product may leave a review.
Related products
300M Stainless Steel Powder
300M Stainless Steel Powder
| Product | 300M Stainless Steel Powder |
| CAS No. | 12597-68-1 |
| Appearance | Fine Metallic Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Fe-Cr-Ni |
| Density | 7.9g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-168/25 |
300M Stainless Steel Description:
300M Stainless Steel Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing300M Stainless Steel Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. 300M Stainless Steel Powder 300M stainless steel powder is a specialized material used in powder metallurgy and additive manufacturing applications. This high-alloy austenitic stainless steel exhibits excellent corrosion resistance and high strength properties. 300M powder can be used to create complex metal components using advanced manufacturing techniques like selective laser sintering (SLS), direct metal laser sintering (DMLS), and binder jetting. The fine spherical powders spread easily and sinter uniformly, producing dense parts 300M has a high nickel and chromium content which gives it excellent corrosion resistance comparable to 304 and 316 stainless steel. The composition is controlled within narrow ranges as shown below: 300M Stainless Steel Powder Composition| Element | Composition Range |
| Carbon (C) | 0.05% max |
| Silicon (Si) | 1.0% max |
| Manganese (Mn) | 2.0% max |
| Phosphorus (P) | 0.03% max |
| Sulfur (S) | 0.01% max |
| Chromium (Cr) | 24.0-26.0% |
| Nickel (Ni) | 19.0-22.0% |
| Molybdenum (Mo) | 4.0-5.0% |
| Nitrogen (N) | 0.10-0.16% |
| Iron (Fe) | Balance |
| Property | Value |
| Density | 7.9 g/cm3 |
| Melting Point | 1370°C (2500°F) |
| Thermal Conductivity | 12 W/m-K |
| Electrical Resistivity | 72 μΩ-cm |
| Modulus of Elasticity | 200 GPa |
| Poisson’s Ratio | 0.29 |
| Tensile Strength | 165ksi (1140 MPa) |
| Yield Strength | 140ksi (965 MPa) |
| Elongation | 35% |
| Industry | Common Applications |
| Aerospace | Engine components, structural parts, landing gear |
| Automotive | Valve bodies, pump parts, turbocharger components |
| Medical | Implants, prosthetics, surgical instruments |
| Chemical | Pumps, valves, pipe fittings |
| Oil & Gas | Downhole tools, wellhead parts, offshore components |
| Industrial | Food processing equipment, press plates, dies and molds |
| Consumer | Watch cases, jewelry, decorative artware |
| Parameter | Typical Values |
| Particle shape | Spherical, satellite, irregular |
| Particle size | 15-45 μm, 15-53 μm, 53-150 μm |
| Apparent density | 2.5-4.5 g/cm3 |
| Tap density | 3.5-4.5 g/cm3 |
| Flow rate | 15-25 s/50g |
| Carbon content | < 0.05 wt% |
| Oxygen content | < 0.15 wt% |
| Nitrogen content | 0.10-0.16 wt% |
| Hydrogen content | < 0.0015 wt% |
| Proper handling and storage helps maintain the powder composition, morphology, flowability and reuse properties. Contamination can negatively impact material properties or cause printing defects. | Proper handling and storage helps maintain the powder composition, morphology, flowability and reuse properties. Contamination can negatively impact material properties or cause printing defects. |
| 300M Stainless Steel Powder Storage | 300M Stainless Steel Powder Storage |
| 300M powder should be stored in the following conditions: | 300M powder should be stored in the following conditions: |
| 300M Stainless Steel Powder Storage | 300M Stainless Steel Powder Storage |
| Store in original sealed containers until ready to use | Store in original sealed containers until ready to use |
| Use inert gas sealing or vacuum packaging for long-term storage | Use inert gas sealing or vacuum packaging for long-term storage |
| Store in a cool, dry location away from direct sunlight | Store in a cool, dry location away from direct sunlight |
| Test | Details |
| Density | Archimedes’, Helium pycnometry |
| Surface roughness | Profilometer, interferometry |
| Hardness | Rockwell, Vickers, Brinell |
| Tensile strength | ASTM E8 |
| Microstructure | Optical microscopy, image analysis |
| Layer bonding | Electron microscopy, dye penetrant |
| Porosity | X-ray tomography, image analysis |
| Surface defects | Penetrant testing, microscopy |
| Alloy | Composition | Properties | Applications |
| 300M | High Ni, Cr, Mo | Excellent corrosion resistance, good ductility and toughness, high strength to 600°C | Aerospace, oil & gas, chemical, high temp uses |
| 316L | Medium Ni, Cr | Excellent corrosion resistance, readily weldable, good bio-compatibility | Marine hardware, medical implants, food processing |
| 17-4PH | Medium Ni, Cr + Cu | High hardness and strength, good corrosion resistance, heat treatable | Aerospace, tooling, automotive, plastic molds |
304l Stainless Steel Powder
304l Stainless Steel Powder
| Product | 304l Stainless Steel Powder |
| CAS No. | 11143-21-4 |
| Appearance | Metallic Gray or Silver Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Fe-18Cr-8Ni |
| Density | 7.9g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-338/25 |
304l Stainless Steel Description:
304l Stainless Steel Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing.304l Stainless Steel Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. 304l Stainless Steel Powder 304L stainless steel powder is an austenitic chromium-nickel stainless steel powder with low carbon content. It offers excellent corrosion resistance, good formability and weldability, and widely used for powder metallurgy applications. The ‘L’ denotes lower carbon compared to 304 standard grade. The low carbon minimizes carbide precipitation and maximizes corrosion resistance. Powder metallurgy 304L provides a cost-effective alternative to 316L for non-critical applications not needing molybdenum alloying. Overview 304L stainless steel powder is an austenitic chromium-nickel stainless steel powder with low carbon content. It offers excellent corrosion resistance, good formability and weldability, and widely used for powder metallurgy applications. The ‘L’ denotes lower carbon compared to 304 standard grade. The low carbon minimizes carbide precipitation and maximizes corrosion resistance. Powder metallurgy 304L provides a cost-effective alternative to 316L for non-critical applications not needing molybdenum alloying. This article provides an in-depth look at 304L stainless steel powder covering composition, properties, processing, applications, specifications, suppliers, costs, and other technical details. Composition The nominal composition of 304L stainless steel powder is listed below: Table: Typical composition of 304L stainless steel powder| Element | Weight % |
| Chromium (Cr) | 18-20 |
| Nickel (Ni) | 8-10.5 |
| Manganese (Mn) | <2 |
| Silicon (Si) | <1 |
| Carbon (C) | <0.03 |
| Sulfur (S) | <0.03 |
| Phosphorus (P) | <0.045 |
| Nitrogen (N) | <0.1 |
| Iron (Fe) | Balance |
| Property | Value |
| Density | 7.9-8.1 g/cm3 |
| Ultimate Tensile Strength | 505-620 MPa |
| Yield Strength | 205-275 MPa |
| Elongation | ≥40% |
| Hardness | ≤92 HRB |
| Modulus of Elasticity | 190-210 GPa |
| Melting Point | 1400-1450°C |
| Thermal Conductivity | 16 W/m-K |
| Electrical Resistivity | 0.072 μΩ-cm |
| Attribute | Details |
| Particles sizes | 15-45 μm, 10-100 μm |
| Morphology | Spherical, irregular |
| Apparent density | 2.5-4.5 g/cm3 |
| Tap density | 4-5 g/cm3 |
| Hall flow rate | <30 s/50g |
| Purity | >99.5% |
| Oxygen content | <2000 ppm |
| Moisture content | <0.2% |
Al 3004 Powder
Al 3004 Powder
| Product | Al 3004 Â Powder |
| CAS No. | 7429-90-5 |
| Appearance | Silvery-Gray Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Al-1.2Mn-1.0Mg |
| Density | 2.73g/cm3 |
| Molecular Weight | 27g/mol |
| Product Codes | NCZ-DCY-180/25 |
Al 3004 Description:
Al 3004 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 3004 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 3004 powder Al 3004 powder is a specially formulated coating material composed of aluminum alloy. It is created by combining aluminum with a precise blend of alloying elements to ensure optimal performance. The powder form allows for easy application and provides a uniform coating when properly cured. Overview of Al 3004 Powder Al 3004 is a wrought aluminum alloy known for its moderate strength, excellent corrosion resistance, good formability and weldability. Manganese enhances strength through solid solution strengthening while magnesium improves strength through precipitation hardening. Key characteristics of Al 3004 powder include: Moderate tensile strength with excellent ductility Very good formability and weldability Excellent corrosion resistance High thermal and electrical conductivity Low density Available in various particle size distributions Al 3004 powder is suitable for applications requiring moderate strength combined with good weldability, machinability and corrosion resistance. Chemical Composition of Al 3004 Powder| Element | Weight % |
| Aluminum (Al) | Balance |
| Manganese (Mn) | 1.0-1.5% |
| Magnesium (Mg) | 0.2-0.8% |
| Silicon (Si) | 0-0.6% |
| Iron (Fe) | 0-0.7% |
| Copper (Cu) | 0-0.25% |
| Chromium (Cr) | 0-0.10% |
| Zinc (Zn) | 0-0.10% |
| Property | Value |
| Density | 2.73 g/cm3 |
| Melting Point | 630-655°C |
| Thermal Conductivity | 180 W/mK |
| Electrical Conductivity | 41-43 %IACS |
| Young’s Modulus | 68-72 GPa |
| Poisson’s Ratio | 0.33 |
| Tensile Strength | 190-240 MPa |
| Yield Strength | 110-170 MPa |
| Elongation | 10-20% |
| Hardness | 50-65 Brinell |
| Parameter | Al 3004 | Al 6061 |
| Alloy type | Non-heat treatable | Heat treatable |
| Mg content | 0.2-0.8% | 0.8-1.2% |
| Strength | Moderate | Higher |
| Corrosion resistance | Excellent | Excellent |
| Weldability | Excellent | Good |
| Machinability | Good | Excellent |
| Cost | Lower | Higher |
Al 3103 Powder
Al 3103 Powder
| Product | Al 3103 Powder |
| CAS No. | 7429-90-5 |
| Appearance | Grayish Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Al-1.2Mn |
| Density | 2.73g/cm3 |
| Molecular Weight | 27g/mol |
| Product Codes | NCZ-DCY-181/25 |
Al 3130 Description:
Al 3130 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 3130 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 3103 powder Al 3103 powder is a form of aluminum alloy that exhibits excellent mechanical properties, corrosion resistance, and thermal conductivity. It belongs to the 3xxx series of aluminum alloys, which are known for their moderate strength and exceptional formability. The powder form allows for easier handling, processing, and fabrication, making it suitable for various industrial applications. Overview of Al 3103 Powder Al 3103 is a non-heat treatable wrought aluminum alloy known for its excellent corrosion resistance, good formability and weldability. Manganese additions improve strength through solid solution strengthening while maintaining excellent ductility. Key characteristics of Al 3103 powder include: Moderate strength with high ductility and toughness Excellent weldability and formability Very good corrosion resistance High thermal and electrical conductivity Low density Available in various particle size distributions Al 3103 powder is suitable for applications like chemical tanks, food processing equipment, heat exchangers, road tankers, utensils etc. needing moderate strength combined with excellent corrosion resistance. Chemical Composition of Al 3103 Powder| Element | Weight % |
| Aluminum (Al) | Balance |
| Manganese (Mn) | 1.0-1.5% |
| Silicon (Si) | 0.6% max |
| Iron (Fe) | 0.7% max |
| Copper (Cu) | 0.10% max |
| Magnesium (Mg) | 0.10% max |
| Zinc (Zn) | 0.10% max |
| Chromium (Cr) | 0.05-0.20% |
| Property | Value |
| Density | 2.73 g/cm3 |
| Melting Point | 630-654°C |
| Thermal Conductivity | 130 W/mK |
| Electrical Conductivity | 41-43% IACS |
| Young’s Modulus | 70 GPa |
| Poisson’s Ratio | 0.33 |
| Tensile Strength | 110-180 MPa |
| Yield Strength | 55-110 MPa |
| Elongation | 18-30% |
| Hardness | 25-55 Brinell |
| Parameter | Al 3103 | Al 3003 |
| Alloy type | Non-heat treatable | Non-heat treatable |
| Mn content | 1.0-1.5% | 1.0-1.5% |
| Strength | Slightly lower | Slightly higher |
| Corrosion resistance | Excellent | Excellent |
| Weldability | Excellent | Excellent |
| Cost | Lower | Higher |
Al 3104 Powder
Al 3104 Powder
| Product | Al 3104 Â Powder |
| CAS No. | 7429-90-5 |
| Appearance | Silvery-Gray Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Al-1Mn-1Mg |
| Density | 2.72g/cm3 |
| Molecular Weight | 27g/mol |
| Product Codes | NCZ-DCY-183/25 |
Al 3104 Description:
Al 3104 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 3104 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 3104 powder Al 3104 powder is an aluminum alloy composed primarily of aluminum (Al) with small additions of manganese (Mn) and magnesium (Mg). This powder form of the alloy offers distinct advantages in terms of its processability and versatility. It is commonly used in various industries due to its excellent combination of strength, corrosion resistance, and formability. Overview of Al 3104 Powder Al 3104 is a 3000 series wrought aluminum alloy known for its good corrosion resistance, excellent formability and weldability. Manganese additions provide strength through solid solution strengthening while maintaining ductility and toughness. Key characteristics of Al 3104 powder include: Moderate strength with excellent ductility Very good weldability and formability Excellent corrosion resistance High thermal and electrical conductivity Low density Available in various particle size distributions Al 3104 powder is suitable for chemical tanks, utensils, heat exchangers and applications needing moderate strength combined with good corrosion resistance. Chemical Composition of Al 3104 Powder| Element | Weight % |
| Aluminum (Al) | Balance |
| Manganese (Mn) | 1.0-1.5% |
| Silicon (Si) | 0.3% max |
| Iron (Fe) | 0.7% max |
| Copper (Cu) | 0.25% max |
| Magnesium (Mg) | 0.25% max |
| Zinc (Zn) | 0.20% max |
| Chromium (Cr) | 0.05-0.20% |
| Property | Value |
| Density | 2.73 g/cm3 |
| Melting Point | 634-643°C |
| Thermal Conductivity | 134 W/mK |
| Electrical Conductivity | 38-42% IACS |
| Young’s Modulus | 70 GPa |
| Poisson’s Ratio | 0.33 |
| Tensile Strength | 150-195 MPa |
| Yield Strength | 95-120 MPa |
| Elongation | 20-30% |
| Hardness | 45-65 Brinell |
| Parameter | Al 3104 | Al 3003 |
| Alloy type | Non-heat treatable | Non-heat treatable |
| Mn content | 1.0-1.5% | 1.0-1.5% |
| Strength | Slightly lower | Slightly higher |
| Corrosion resistance | Excellent | Excellent |
| Weldability | Excellent | Excellent |
| Cost | Lower | Higher |
Al 3203 Powder
Al 3203 Powder
| Product | Al 3203 Powder |
| CAS No. | 7429-90-5 |
| Appearance | Silvery-Gray Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Al2O3 |
| Density | 2.7g/cm3 |
| Molecular Weight | 27g/mol |
| Product Codes | NCZ-DCY-186/25 |
Al 3203 Description:
Al 3203 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 3203 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 3203 powder Al2O3 powder is an aluminum alloy composed of aluminum, copper, and manganese. It is renowned for its excellent strength and high fatigue resistance, making it an ideal choice for demanding environments and structural components. The precise composition and manufacturing process of Al 3203 powder ensure consistent quality and performance, making it a reliable material for numerous applications. Overview of Al2O3 Powder Al2O3 or aluminum oxide is a ceramic material known for its high hardness, excellent dielectric properties, refractoriness, abrasion and corrosion resistance. Alumina powder is the powder form of aluminum oxide used in a variety of applications. Key properties of Al2O3 powder include: High hardness and wear resistance High melting point of over 2000°C Low electrical and thermal conductivity Excellent thermal shock resistance Resistant to strong acids and alkalis Low density around 3.95 g/cm3 Chemically inert material White color powder available in various particle sizes Chemical Composition of Al2O3 Powder| Compound | Formula | Weight % |
| Aluminum oxide | Al2O3 | 99.5% min |
| Silicon dioxide | SiO2 | 0.05% max |
| Iron oxide | Fe2O3 | 0.08% max |
| Titanium dioxide | TiO2 | 0.03% max |
| Sodium oxide | Na2O | 0.05% max |
| Magnesium oxide | MgO | 0.03% max |
| Property | Value |
| Melting point | 2050°C |
| Density | 3.95 g/cm3 |
| Hardness | 9 Mohs |
| Flexural strength | 330 MPa |
| Compressive strength | 2600 MPa |
| Porosity | <1% |
| Thermal conductivity | 30 W/m.K |
| Electrical resistivity | >1014 ohm.cm |
| Dielectric strength | 15-35 kV/mm |
| Water absorption | 0% |
| Parameter | α-Al2O3 | γ-Al2O3 |
| Crystal structure | Hexagonal | Cubic |
| Density | 3.95 g/cm3 | 3.65 g/cm3 |
| Hardness | 9 Mohs | 8 Mohs |
| Melting point | 2050°C | ~1100°C |
| Thermal conductivity | 30 W/m.K | 5-10 W/m.K |
| Surface area | <10 m2/g | 100-300 m2/g |
| Applications | Abrasives, ceramics | Catalysts, adsorbents |
| Price | Lower | Higher |
Alloy Series Powder
Alloy Series Powder
| Product | Alloy Series Powder |
| CAS No. | 65997-19-5 |
| Appearance | Gray Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | NiCrCoMoFeAl |
| Density | 8.2-8.5g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-240/25 |
Alloy Series Description:
Alloy Series Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAlloy Series Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. High temperature alloy series High-temperature alloy series powders are designed to handle extreme high-temperature environments, providing excellent performance and heat-resistant properties. Let’s explore this range of products and understand their potential for high temperature applications.| Product | Specification | Apparent Density | Flow Ability | Oxygen Content | Tensile Strength | Yield Strength | Elongation |
| GH3625 | 15-53µm 45-105µm 75-150µm | ≥4.40g/cm³ | ≤20s/50g | ≤300ppm | 1000±50Mpa | 600±50Mpa | 35±5% |
| GH4169 | ≥4.20g/cm³ | ≤20s/50g | ≤300ppm | 1250±30Mpa | 1000±30Mpa | 18±3% | |
| GH3230 | ≥4.40g/cm³ | ≤20s/50g | ≤300ppm | 930±30Mpa | 930±30Mpa | 25±5% | |
| GH3536 | ≥4.40g/cm³ | ≤20s/50g | ≤300ppm | 850±30Mpa | 550±20Mpa | 42±5% |
AlSi50 Powder
AlSi50 Powder
| Product | AlSi50 Powder |
| CAS No. | 11145-27-0 |
| Appearance | Gray Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | AlSi |
| Density | 2.5-2-7g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-194/25 |
AlSi50 Description:
AlSi50 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAlSi50 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. AlSi50 Powder AlSi50 is an aluminum-silicon alloy powder containing 50% silicon and remainder aluminum. It offers an exceptional combination of properties like low density, high fluidity, low thermal expansion, high specific strength, and corrosion resistance. AlSi50 is an aluminum-silicon alloy powder containing 50% silicon and remainder aluminum. It offers an exceptional combination of properties like low density, high fluidity, low thermal expansion, high specific strength, and corrosion resistance. AlSi50 Powder Composition The typical composition of AlSi50 alloy powder is:| Element | Composition |
| Aluminum (Al) | Balance |
| Silicon (Si) | 48-52% |
| Property | Value |
| Density | 2.55 g/cm3 |
| Melting Point | 577°C |
| Ultimate Tensile Strength | 200-300 MPa |
| Elongation | <1% |
| Hardness | 100-120 HB |
| Thermal Conductivity | 50-90 W/m-K |
| CTE | 12-15 x 10<sup>-6</sup>/°C |
| Young’s Modulus | 80-90 GPa |
| Corrosion Resistance | Excellent |
| Applications | Benefits |
| Automotive components | Low density and excellent castability. |
| Aerospace parts | High specific strength, stable dimensions. |
| Electronic substrates | Thermal management, CTE match with ceramics. |
| Mirror blanks | Low density, machinability, stability. |
| Medical implants | Biocompatible, non-toxic, corrosion resistant. |
| Parameter | Options |
| Particle size | 10 – 150 microns |
| Particle shape | Irregular, spherical |
| Apparent density | Up to 2.7 g/cm3 |
| Flow rate | Up to 25 s/50g |
| Purity | Up to 99.7% |
| Alloy variants | AlSi40, AlSi30 |
| Method | Details |
| Additive manufacturing | Excellent geometric freedom for complex shapes. |
| Metal injection molding | High precision net shape capability. |
| Press and sinter | Economical for higher volume simpler shapes. |
| Casting | Leverages excellent fluidity and mold filling behavior. |
| Extrusion | For profiles, rods and tubes. |
| Heat Treatment | Details | Purpose |
| Solution heat treatment | 500-550°C, quench | Dissolve soluble phases |
| Artificial aging | 150-180°C, 5-10 hrs | Precipitation hardening |
| Stress relieving | 250°C, 2 hrs | Remove residual stresses |
| Alloy | AlSi50 | AlSi40 | AlSi30 |
| Fluidity | Highest | High | Medium |
| Castability | Excellent | Very Good | Good |
| Hardness | High | Medium | Low |
| Strength | High | Medium | Low |
| Thermal Conductivity | Medium | High | Highest |
| CTE | Low | Medium | High |
| Cost | High | Medium | Low |
| Hazard | Precautions | PPE |
| Skin/eye contact | Avoid direct contact. Rinse if exposed. | Gloves, goggles |
| Inhalation | Avoid breathing dust. Ensure ventilation. | Respirator |
| Ingestion | Avoid hand-mouth transfer. Wash hands. | – |
| Fire | Use sand. Do not use water. | Protective gear |
| Parameter | Method | Specification |
| Chemical composition | OES, XRF, wet chemistry | Conformance to Al and Si content |
| Particle size distribution | Laser diffraction, sieving | D10, D50, D90 within range |
| Powder morphology | SEM imaging | Shape and flow characteristics |
| Apparent density | Hall flowmeter test | Minimum specified density |
| Flow rate | Hall flowmeter test | Maximum seconds for 50g flow |
| Impurity levels | ICP or LECO analysis | Low oxygen, moisture content |
- What is AlSi50 used for?
- AlSi50 is ideal for applications like automotive components, aerospace parts, and electronic substrates where low mass, dimensional stability, and high fluidity are critical.
- Does AlSi50 require heat treatment?
- Optional heat treatment including solutionizing and aging can be done to enhance strength by precipitating silicon particles in the microstructure.
- What methods can consolidate AlSi50 powder?
- AlSi50 powder can be consolidated to full density using metal injection molding, casting, additive manufacturing via SLM/EBM, extrusion, and sintering.
- Is AlSi50 readily weldable?
- AlSi50 has relatively poor weldability owing to high silicon content. Special filler material and techniques are required for welding this alloy.
- Is AlSi50 powder safe to handle?
- Like any fine metal powder, standard safety precautions must be taken when handling AlSi50 powder to minimize health and safety risks.

Reviews
There are no reviews yet.