Inconel 718 Powder
$0.00
Inconel 718 Powder
| Product | Inconel 718 Powder |
| CAS No. | N/A |
| Appearance | Gray Metallic Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ne-Fe-Cr |
| Density | 8.192g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-281/25 |
Inconel 718 Description:
Inconel 718 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing
Inconel 718 Powder Related Information :
Storage Conditions:.
Airtight sealed, avoid light and keep dry at room temperature.
Please contact us for customization and price inquiry
Email: contact@nanochemazone.com
Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.
Best inconel 718 powder for 3D printing
Inconel 718 powder (IN718) is a well-known nickel-based superalloy powder that is extensively used in high-value-added engineering applications such as jet engines in aerospace and steam generators in nuclear power plants, as well as in the defense and marine sectors.
| Metal Powder | Size | Quantity | Price/kg | Size | Quantity | Price/kg |
| Inconel 718 | 0-20μm | 1KG | 60.9 | 53-105μm | 1KG | 59 |
| 10KG | 39.8 | 10KG | 38 | |||
| 100KG | 34.5 | 100KG | 33 |
Overview of Inconel 718 Powder
Inconel 718 is a precipitation hard enable nickel-based superalloy powder widely used for additive manufacturing across aerospace, oil & gas, power generation and automotive industries. This article provides a detailed guide to Inconel 718 powder.
Key aspects covered include composition, properties, AM print parameters, applications, specifications, suppliers, handling, inspection methods, comparisons to alternatives, pros and cons, and FAQs. Tables are used to present information in an easy-to-reference format.
Composition of Inconel 718 Powder
The composition of Inconel 718 is:
| Element | Weight % | Purpose |
| Nickel | 50 – 55 | Principal matrix element |
| Chromium | 17 – 21 | Oxidation resistance |
| Iron | Balance | Solid solution strengthener |
| Niobium | 4.75 – 5.5 | Precipitation hardening |
| Molybdenum | 2.8 – 3.3 | Solid solution strengthening |
| Titanium | 0.65 – 1.15 | Carbide former |
| Aluminum | 0.2 – 0.8 | Precipitation hardening |
| Carbon | 0.08 max | Carbide former |
Trace amounts of cobalt, boron, copper and magnesium are also added to enhance properties.
Key properties of Inconel 718 include:
| Property | Description |
| High strength | Tensile strength 1050 – 1350 MPa |
| Phase stability | Retains strength after prolonged use up to 700°C |
| Corrosion resistance | Resistant to aqueous corrosion and oxidation |
| Weldability | Readily weldable with matching filler |
| Fabricability | Easy to form and machine |
| Creep resistance | High stress rupture strength at high temperatures |
Typical parameters for printing Inconel 718 powder include:
| Parameter | Typical value | Purpose |
| Layer height | 20 – 50 μm | Balance speed and resolution |
| Laser power | 195 – 350 W | Sufficient melting without evaporation |
| Scan speed | 700 – 1300 mm/s | Density versus build rate |
| Hatch spacing | 80 – 160 μm | Mechanical properties |
| Support structure | Minimal | Easy removal |
| Hot isostatic pressing | 1120°C, 100 MPa, 3h | Eliminate internal voids |
The parameters depend on factors like build geometry, temperature management and post-processing needs.
Applications of 3D Printed Inconel 718 Parts
Inconel 718 parts made by AM are used in:
| Industry | Components |
| Aerospace | Turbine blades, disks, hot section parts |
| Oil & gas | Downhole tools, valves, pumps |
| Power generation | Combustion cans, transition ducts |
| Automotive | Turbocharger wheels, exhaust valves |
| Medical | Orthopedic implants, surgical tools |
Benefits over wrought parts include complex geometries and reduced buy-to-fly ratios.
Specifications of Inconel 718 Powder for AM
Inconel 718 powder must meet the following specifications for 3D printing:
| Parameter | Specification |
| Particle size range | 10 – 45 μm |
| Particle shape | Spherical morphology |
| Apparent density | > 4 g/cc |
| Tap density | > 6 g/cc |
| Hall flow rate | > 23 sec for 50 g |
| Purity | >99.9% |
| Oxygen content | <100 ppm |
Handling and Storage of Inconel 718 Powder
As a reactive material, Inconel 718 powder requires controlled handling:
Store sealed containers in a cool, dry inert atmosphere
Prevent exposure to moisture, air, temperature extremes
Use properly grounded equipment during transfer
Avoid dust accumulation and ignition sources
Local exhaust ventilation recommended
Follow applicable safety guidelines
Correct storage/handling prevents composition changes or hazards.
Inspection and Testing of Inconel 718 Powder
Inconel 718 powder batches are validated using:
| Method | Parameters Tested |
| Sieve analysis | Particle size distribution |
| SEM imaging | Particle morphology |
| EDX | Chemistry and composition |
| XRD | Phases present |
| Pycnometry | Density |
| Hall flow rate | Powder flowability |
Testing per ASTM standards ensures batch-to-batch quality consistency.
Comparing Inconel 718 to Alternative Superalloy Powders
Inconel 718 compares with other alloys as:
| Alloy | Cost | Printability | Weldability | Strength |
| Inconel 718 | Low | Good | Excellent | Medium |
| Inconel 625 | Medium | Excellent | Excellent | Low |
| Inconel 939 | Very High | Fair | Limited | Excellent |
| Haynes 282 | High | Good | Limited | Excellent |
For balanced properties at lower cost, Inconel 718 supersedes other Ni superalloys for many applications.
Pros and Cons of Inconel 718 Powder for AM
| Pros | Cons |
| Proven material credentials in AM | Lower high temperature strength than some alloys |
| Excellent weldability and machinability | Susceptible to solidification cracking during printing |
| Readily printed into complex shapes | Requires controlled atmosphere handling |
| Cost advantage over exotic superalloys | Significant post-processing often required |
| Available from range of suppliers | Relatively low hardness after printing |
Inconel 718 enables high performance AM at a reasonable cost.
Frequently Asked Questions about Inconel 718 Powder
Q: What particle size range works best for printing Inconel 718 alloy?
A: A range of 15-45 microns provides the optimum combination of flowability, high resolution, and high density parts.
Q: What post processing is typically required for Inconel 718 AM parts?
A: Hot isostatic pressing, heat treatment, and machining are commonly needed to eliminate voids, optimize properties, and achieve tolerances.
Q: Is Inconel 718 easier to 3D print than other Ni superalloys?
A: Yes, its excellent weldability and lower cracking susceptibility make Inconel 718 one of the easier Ni-based superalloys to process by AM.
Q: What industries use Inconel 718 alloy for metal 3D printing?
A: Aerospace, oil & gas, power generation, automotive, and medical sectors are major applications benefiting from additively manufactured Inconel 718.
Q: Does Inconel 718 require supports when 3D printing?
A: Minimal supports are recommended on overhangs and bridged sections to prevent deformation and allow easy removal after printing.
Q: What defects can occur when printing Inconel 718 powder?
A: Potential defects are cracking, porosity, distortion, incomplete fusion, and surface roughness. Most can be prevented with optimized parameters.
Q: What hardness can be expected with Inconel 718 AM components?
A: Hardness after printing is typically 30-35 HRC. Post-processes like aging can increase it to 40-50 HRC for higher wear resistance.
Q: What accuracy can be obtained with Inconel 718 printed parts?
A: Comparable dimensional tolerances and surface finishes to CNC machined components can be achieved after post-processing.
Q: Is hot isostatic pressing mandatory for Inconel 718 3D printed parts?
A: HIP eliminates internal voids and improves fatigue life. It may not be required for non-critical applications.
Q: What alloy powder has properties closest to Inconel 718 for AM?
A: Inconel 625 has comparable corrosion resistance and weldability to 718 but lower strength. Inconel 939 trades weldability for higher strength.
Description
Note: For pricing & ordering information, please get in touch with us at sales@nanochemazone.com
Please contact us for quotes on Larger Quantities and customization. E-mail: contact@nanochemazone.com
Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.
NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at sales@nanochemazone.com or by phone at (+1 780 612 4177) if you have any questions.
Only logged in customers who have purchased this product may leave a review.
Related products
GH 3625 Powder
GH 3625 Powder
| Product | GH 3625 Powder |
| CAS No. | 3526-43-0 |
| Appearance | Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ni-Fe-Cr-Mo |
| Density | N/A |
| Molecular Weight | 213.28g/mol |
| Product Codes | NCZ-DCY-283/25 |
GH 3625 Description:
GH 3526 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingGH 3625 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. GH 3625 Powder GH3625 powder is an age-hardenable nickel-iron base alloy containing 25% chromium along with additions of molybdenum and aluminum. It provides an exceptional combination of high strength, hardness, corrosion resistance, and oxidation resistance at elevated temperatures. Overview of GH3625 Powder GH 3625 powder is an age-hardenable nickel-iron base alloy containing 25% chromium along with additions of molybdenum and aluminum. It provides an exceptional combination of high strength, hardness, corrosion resistance, and oxidation resistance at elevated temperatures. Key properties and advantages of GH3625 powder include: GH3625 Powder Properties and Characteristics| Properties | Details |
| Composition | Ni-25Cr-4.5Mo-3.5Al alloy |
| Density | 8.2 g/cc |
| Particle shape | Predominantly spherical |
| Size range | 15-45 microns |
| Apparent density | Up to 60% of true density |
| Flowability | Good |
| Strength | Very high after aging treatment |
| Corrosion resistance | Excellent including pitting and crevice corrosion |
| Element | Weight % |
| Nickel | Balance |
| Chromium | 24-27% |
| Molybdenum | 4-5% |
| Aluminum | 3-4% |
| Carbon | 0.1% max |
| Manganese | 1% max |
| Silicon | 0.5% max |
| Sulfur | 0.015% max |
| Property | Values |
| Density | 8.2 g/cc |
| Melting point | 1390-1440°C |
| Thermal conductivity | 11 W/mK |
| Electrical resistivity | 52 μΩ-cm |
| Coefficient of thermal expansion | 13.0 x 10^-6 /K |
| Property | Condition | Values |
| Hardness | Solution annealed | 35 HRC |
| Hardness | Peak aged | 50-56 HRC |
| Tensile strength | Annealed | 1000 MPa |
| Tensile strength | Aged | 1500-1800 MPa |
| Yield strength | Aged | 1200-1600 MPa |
| Elongation | Aged | 10-15% |
| Industry | Uses |
| Aerospace | Turbine blades, bolts, fasteners |
| Oil and gas | Wellhead valves, downhole tools |
| Chemical processing | Extruder screws, valve parts |
| Power generation | Boiler components, steam and gas turbines |
| Standard | Description |
| AMS 5815 | Nickel alloy powder compositions |
| AMS 5408 | Wire, rods, and bars of precipitation hardening nickel alloys |
| AMS 5698 | Investment castings of PH nickel alloys |
| AMS 5772 | Nickel alloy forgings |
| AMS 5634 | Nickel alloy extruded shapes |
| Particle Size | Characteristics |
| 15-25 microns | Ultrafine powder used in laser AM processes |
| 25-45 microns | Size range for most powder bed AM systems |
| 45-75 microns | Larger sizes used in laser cladding |
| Apparent Density | Details |
| Up to 60% of true density | For spherical powder morphology |
| 4.5 – 5.2 g/cc | Improves with greater packing density |
| Method | Details |
| Gas atomization | High pressure inert gas breaks up molten metal stream into fine droplets |
| Vacuum induction melting | High purity input materials melted under vacuum |
| Multiple remelting | Improves chemical homogeneity |
| Sieving | Classifies powder into different particle size fractions |
| Recommendation | Reason |
| Ensure proper ventilation | Avoid exposure to fine metallic particles |
| Use appropriate PPE | Prevent accidental inhalation or ingestion |
| Follow safe protocols | Reduce health and fire hazards |
| Store sealed containers | Prevent contamination or oxidation |
| Test | Details |
| Chemical analysis | OES or XRF spectroscopy used to verify composition |
| Particle size distribution | Laser diffraction analysis |
| Apparent density | Measured as per ASTM B212 standard |
| Powder morphology | SEM imaging of particle shape |
| Flow rate analysis | Gravity flow rate through specified nozzle |
| Moisture measurement | Loss on drying analysis |
| Parameter | GH3625 | Inconel 718 |
| Density | 8.2 g/cc | 8.2 g/cc |
| Strength | Higher | Lower |
| Corrosion resistance | Excellent | Outstanding |
| Cost | Moderate | Very high |
| Uses | Oil and gas, chemical processing | Aerospace, nuclear |
GH 3625 Powder
GH 3625 Powder
| Product | GH 3625 Powder |
| CAS No. | 3526-43-0 |
| Appearance | Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ni-Fe-Cr-Mo |
| Density | N/A |
| Molecular Weight | 213.28g/mol |
| Product Codes | NCZ-DCY-287/25 |
GH 3625 Description:
GH 3526 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingGH 3625 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. GH3625 powder Inconel 625 powder GH3625 powder Inconel 625 powder is a Mo-Nb reinforced nickel-based high-temperature alloy.| Metal Powder | Size | Quantity | Price/kg | Size | Quantity | Price/kg |
| Inconel 625 | 0-20μm | 1KG | $59 | 20-63μm | 1KG | $98.30 |
| 10KG | $39 | 10KG | $69.10 | |||
| 100KG | $34 | 100KG | $64.50 |
| Element | Weight % |
| Nickel | Balance |
| Chromium | 15-17% |
| Cobalt | 10% |
| Molybdenum | 8-10% |
| Tantalum | 5-6% |
| Aluminum | 1.2-1.7% |
| Titanium | 0.5-1.2% |
| Boron | 0.01% |
| Property | Value |
| Density | 8.1-8.5 g/cc |
| Melting Point | 1260-1335°C |
| Thermal Conductivity | 11-12.5 W/mK |
| Coefficient of Thermal Expansion | 12.5-13.5 x 10<sup>-6</sup>/K |
| Modulus of Elasticity | 156-186 GPa |
| Poission’s Ratio | 0.29-0.33 |
| Tensile Strength | 1050-1280 MPa |
| Yield Strength (0.2% offset) | 860-1050 MPa |
| Elongation | 8-15% |
| Hardness | 32-38 HRC |
| Industry | Components |
| Aerospace | Turbine blades, combustor parts, nozzle guide vanes |
| Automotive | Turbocharger wheels, manifolds, valves |
| Oil and Gas | Wellhead parts, downhole tools, valves |
| Power Generation | Heat exchangers, burner components |
| Chemical Processing | Pump impellers, valves, reaction vessels |
| Medical | Dental implants, prosthetics, surgical instruments |
| Specification | Details |
| Particle Size Distribution | 15-45 μm, 15-53 μm, 53-150 μm |
| Particle Shape | Spherical, satellite, polyhedral |
| Alloy Modifications | With B, C, Zr, Nb, Ta |
| Manufacturing Method | Gas atomization, plasma atomization |
| Standard | Description |
| ASTM F3056 | Standard specification for additive manufacturing nickel alloy |
| AMS7016 | Nickel alloy powder for high temperature service |
| ASME B46.1 | Surface texture requirements |
| Property | GH3625 | Inconel 718 | Satellite 21 |
| Cost | Medium | High | Low |
| Density | High | Medium | High |
| Strength | Medium | Very High | Medium |
| Hardness | High | Medium | Very High |
| Wear Resistance | Medium | Low | Very High |
| Corrosion Resistance | Medium | High | Medium |
| Oxidation Resistance | Medium | High | Medium |
| Thermal Stability | Up to 1000°C | Up to 700°C | Up to 900°C |
| Weldability | Good | Poor | Medium |
| Manufacturability | Medium | Difficult | Easy |
GH3230 Powder
GH3230 Powder
| Product | GH3230 Powder |
| CAS No. | 3230-94-2 |
| Appearance | Metallic Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ni-Cr-Mo-W-Fe |
| Density | 7.8g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-284/25 |
GH3230 Description:
GH3230 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingGH3230 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. GH3230 Powder GH3230 powder is an age-hardenable nickel-iron base alloy containing 30% chromium along with additions of molybdenum and aluminum. It offers an exceptional combination of high strength, hardness, corrosion resistance, and oxidation resistance at elevated temperatures. Overview of GH3230 Powder GH3230 powder is an age-hardenable nickel-iron base alloy containing 30% chromium along with additions of molybdenum and aluminum. It offers an exceptional combination of high strength, hardness, corrosion resistance, and oxidation resistance at elevated temperatures. GH3230 Powder Properties and Characteristics| Properties | Details |
| Composition | Ni-30Cr-4Mo-2Al alloy |
| Density | 8.3 g/cc |
| Particle shape | Predominantly spherical |
| Size range | 10-45 microns |
| Apparent density | Up to 60% of true density |
| Flowability | Good |
| Strength | Very high after aging treatment |
| Corrosion resistance | Excellent including pitting and crevice corrosion |
| Element | Weight % |
| Nickel | Balance |
| Chromium | 28-32% |
| Molybdenum | 3-5% |
| Aluminum | 1-3% |
| Carbon | 0.1% max |
| Manganese | 1% max |
| Silicon | 0.5% max |
| Sulfur | 0.015% max |
| Property | Values |
| Density | 8.3 g/cc |
| Melting point | 1370-1420°C |
| Thermal conductivity | 12 W/mK |
| Electrical resistivity | 70 μΩ-cm |
| Coefficient of thermal expansion | 12.5 x 10^-6 /K |
| Property | Condition | Values |
| Hardness | Solution annealed | 37 HRC |
| Hardness | Peak aged | 52-58 HRC |
| Tensile strength | Annealed | 1100 MPa |
| Tensile strength | Aged | 1600-2000 MPa |
| Yield strength | Aged | 1400-1800 MPa |
| Elongation | Aged | 8-12% |
| Industry | Uses |
| Aerospace | Turbine blades, bolts, fasteners |
| Oil and gas | Wellhead valves, downhole tools |
| Chemical processing | Extruder screws, valve parts |
| Power generation | Boiler components, steam and gas turbines |
| Standard | Description |
| AMS 5815 | Nickel alloy powder compositions |
| AMS 5408 | Wire, rods, bars of precipitation hardening nickel alloys |
| AMS 5698 | Investment castings of PH nickel alloys |
| AMS 5772 | Nickel alloy forgings |
| AMS 5634 | Nickel alloy extruded shapes |
| Particle Size | Characteristics |
| 10-22 microns | Ultrafine powder used in laser AM processes |
| 22-45 microns | Size range for most powder bed AM systems |
| 45-75 microns | Larger sizes used in laser cladding or thermal spraying |
| Apparent Density | Details |
| Up to 60% of true density | For spherical powder morphology |
| 4.8 – 5.5 g/cc | Improves with greater packing density |
| Method | Details |
| Gas atomization | High pressure inert gas breaks up molten metal stream into fine droplets |
| Vacuum induction melting | High purity input materials melted under vacuum |
| Multiple remelting | Improves chemical homogeneity |
| Sieving | Classifies powder into different particle size fractions |
| Recommendation | Reason |
| Ensure proper ventilation | Avoid exposure to fine metallic particles |
| Use appropriate PPE | Prevent accidental inhalation or ingestion |
| Follow safe protocols | Reduce health and fire hazards |
| Store sealed containers | Prevent contamination or oxidation |
| Test | Details |
| Chemical analysis | OES or XRF spectroscopy used to verify composition |
| Particle size distribution | Laser diffraction analysis |
| Apparent density | Measured as per ASTM B212 standard |
| Powder morphology | SEM imaging of particle shape |
| Flow rate analysis | Gravity flow rate through specified nozzle |
| Moisture measurement | Loss on drying analysis |
| Parameter | GH3230 | Inconel 718 |
| Density | 8.3 g/cc | 8.2 g/cc |
| Strength | Higher | Lower |
| Corrosion resistance | Excellent | Outstanding |
| Cost | Moderate | Very high |
| Uses | Oil and gas, chemical processing | Aerospace, nuclear |
GH3536 Alloy Powder
GH3536 Alloy Powder
| Product | GH3536 Alloy Powder |
| CAS No. | N/A |
| Appearance | Â Gray to Metallic Silver Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ni-Cr-Mo-Co-W |
| Density | 8.3g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-286/25 |
GH3536 Alloy Description:
GH3536 Alloy Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingGH3536 Alloy Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. GH3536 Alloy Powder GH3536 alloy powder is a nickel-based superalloy powder used for additive manufacturing applications requiring high strength and corrosion resistance at elevated temperatures. As an advanced powder metallurgy product, GH3536 allows complex geometries to be fabricated using laser or electron beam-based metal 3D printing processes. GH3536 alloy powder was designed specifically for additive manufacturing, using composition optimization and powder atomization techniques to achieve superior properties compared to conventional nickel superalloys. The key features of GH3536 alloy powder include: High strength at temperatures up to 760°C (1400°F) Oxidation and corrosion resistance in harsh environments Excellent thermal fatigue life and crack growth resistance Good printability and low porosity in printed parts Can be age hardened to optimize strength and ductility The combination of properties make GH3536 suitable for aerospace, power generation, oil & gas, and chemical processing components exposed to extreme temperatures and stresses. Both new part fabrication and repair of worn components can benefit from using this advanced powder. GH3536 Alloy Powder Composition GH3536 has a complex composition designed to provide an optimal balance of properties. The nominal composition is shown below:| Element | Weight % |
| Nickel (Ni) | Balance |
| Chromium (Cr) | 13.5 – 16.0 |
| Cobalt (Co) | 12.0 – 15.0 |
| Tungsten (W) | 5.0 – 7.0 |
| Tantalum (Ta) | 3.0 – 5.0 |
| Aluminum (Al) | 2.8 – 3.8 |
| Titanium (Ti) | 0.5 – 1.5 |
| Niobium (Nb) | 0.5 – 1.5 |
| Hafnium (Hf) | 0.2 – 0.8 |
| Carbon (C) | 0.05 – 0.15 |
| Boron (B) | 0.01 – 0.03 |
| Zirconium (Zr) | 0.01 – 0.05 |
| Property | As-printed | Aged |
| Tensile Strength | 1050 – 1250 MPa (152 – 181 ksi) | 1275 – 1400 MPa (185 – 203 ksi) |
| Yield Strength (0.2% offset) | 900 – 1100 MPa (131 – 160 ksi) | 1150 – 1300 MPa (167 – 189 ksi) |
| Elongation | 25 – 35% | 16 – 22% |
| Hardness | 32 – 38 HRC | 36 – 43 HRC |
| Property | Typical Value |
| Density | 8.3 g/cm3 |
| Melting Point | 1310°C (2390°F) |
| Property | Temperature |
| Coefficient of Thermal Expansion | 12.8 x 10-6/°C at 20-100°C |
| Thermal Conductivity | 11.4 W/m-K at 20°C |
| Specific Heat | 0.43 J/g-°C at 20°C |
| Powder Size Distribution | |
| D10 | 10 μm |
| D50 | 25 μm |
| D90 | 45 μm |
| Powder Classes | Nominal Flow Rate | Apparent Density |
| Class I | 25 s | 2.5 g/cm3 |
| Class II | 28 s | 2.8 g/cm3 |
| Class III | 32 s | 3.2 g/cm3 |
Hastelloy X Powder
Hastelloy X Powder
| Product | Hastelloy X Powder |
| CAS No. | N/A |
| Appearance | Silvery-Gray  Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | NiCrMoFe |
| Density | 8.22g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-276/25 |
Hastelloy X Description:
Hastelloy X Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingHastelloy X Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Best Hastelloy X Powder丨High temperature alloy Powder for 3D Printing Hastelloy X Powder holds a special place. It’s a nickel-based superalloy that has an extraordinary blend of properties, thanks to its composition which includes chromium, iron, and molybdenum. The high nickel content offers exceptional resistance to oxidation and corrosion. Overview of Hastelloy X Powder Hastelloy X is a nickel-based superalloy powder known for its excellent high temperature strength, oxidation resistance, and fabricability. It has applications in the aerospace, industrial, and energy industries where parts are exposed to extreme environments. This article provides a comprehensive guide to Hastelloy X powder. It covers the composition, properties, applications, specifications, suppliers, handling, inspection, comparisons, pros and cons, and frequently asked questions about this versatile alloy powder. Quantitative data is presented in easy-to-read tables for quick reference. Composition of Hastelloy X Powder Hastelloy X has a complex composition optimized for high temperature performance. The main alloying elements are nickel, chromium, iron, and molybdenum.| Element | Weight % | Role |
| Nickel | Balance | Matrix element, provides corrosion resistance |
| Chromium | 21.5 – 23.5 | Oxidation resistance, formation of protective Cr2O3 |
| Iron | 17 – 20 | Solid solution strengthening |
| Molybdenum | 8 – 10 | Solid solution strengthening, creep resistance |
| Cobalt | 1 max | Enhances hot workability |
| Manganese | 1 max | Deoxidizer |
| Silicon | 0.5 max | Deoxidizer |
| Carbon | 0.15 max | Carbide former |
| Property | Description |
| High temperature strength | Excellent creep rupture strength up to 1150°C |
| Oxidation resistance | Resists oxidation in air up to 1200°C |
| Thermal fatigue resistance | Resists cracking during thermal cycling |
| Fabricability | Easy to form and weld compared to other superalloys |
| Corrosion resistance | Resists many oxidizing and reducing environments |
| Industry | Applications |
| Aerospace | Jet engine combustion liners, afterburners, exhaust parts |
| Industrial | Reformer tubes, heat treatment equipment |
| Energy | Nuclear & fossil fuel power generation, chemical processing |
| Automotive | Exhaust system components, turbocharger parts |
| Parameter | Specification |
| Alloy grades | Hastelloy X, B3, BC3, BN |
| Particle size | 15-45 microns, 45-105 microns |
| Particle shape | Spherical, irregular morphology |
| Apparent density | 2.5-4.5 g/cc |
| Tap density | 4-6 g/cc |
| Purity | >99.9% |
| Oxygen content | <1000 ppm |
| Moisture content | <0.2% |
| Test Method | Parameters Checked |
| Sieve analysis | Particle size distribution |
| Apparent density | Powder flowability |
| Tap density | Packed density |
| Scanning electron microscopy | Particle morphology |
| Energy dispersive X-ray | Chemistry, alloy composition |
| X-ray diffraction | Phases present |
| Inductively coupled plasma | Trace element analysis |
| Alloy | Oxidation Resistance | Fabricability | Cost |
| Hastelloy X | Excellent | Good | High |
| Inconel 625 | Good | Excellent | Medium |
| Haynes 230 | Excellent | Poor | Very High |
| Inconel 718 | Medium | Fair | Medium |
| Pros | Cons |
| Excellent high temperature strength | Expensive compared to stainless steels |
| Outstanding oxidation resistance | Lower fabricability than Inconel 625 |
| Thermal fatigue resistance | Susceptible to embrittlement at lower temperatures |
| Ease of welding and machining | Requires controlled handling and processing |
| Resists many corrosive environments | Limited data available compared to popular alloys |
IN738LC Powder
IN738LC Powder
| Product | INC738LC Powder |
| CAS No. | N/A |
| Appearance | Gray or Metallic Silver Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | Ni-16Cr-8.5Co-2.4Al-3.4Ti-1.75Mo-1.75w-0.9Nb-0.6Zr-0.1C |
| Density | 8.19g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-278/25 |
IN738LC Description:
INC738LC Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingIN738LC Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Best IN738LC powder for 3D printing in 2024| Alloy | Nominal Composition (wt%) |
| IN738LC | Ni – 16Cr – 8.5Co – 3.4Al – 3.4Ti – 1.7Mo – 2.6W – 1.7Ta – 0.9Nb – 0.05C – 0.03Zr – 0.001B |
| Property | Value |
| Density | 8.19 g/cm³ |
| Melting Range | 1260-1335°C |
| Yield Strength (at 650°C) | >758 MPa |
| Tensile Strength (at 650°C) | >1035 MPa |
| Elongation (at 650°C) | >12% |
| Grain Size | Fine-grained |
| Gamma Prime Phase | High volume fraction |
| Application | Industry | Examples |
| Turbine Components | Aerospace, Energy | Blades, Vanes, Nozzles |
| Automotive Components | Automotive | Turbochargers, Exhaust Manifolds |
| Tooling and Molds | Manufacturing | Injection Molds, Die Casting Molds |
| Heat Exchangers | Energy, Chemical | High-Temperature Recuperators |
| Medical Implants | Healthcare | Orthopedic Implants, Dental Restorations |
| Powder Specifications |
| Particle Size Distribution: 15-53 μm |
| Flowability: Excellent |
| Sphericity: High |
| Apparent Density: 4.2-4.6 g/cm³ |
| Standards: AMS 5832, AMS 5385 |
| Typical Grades |
| IN738LC – Standard Grade |
| IN738LC-LG – Low Gauge Grade |
| IN738LC-HG – High Gauge Grade |
| Pros | Cons |
| Excellent high-temperature strength and creep resistance | Higher material cost compared to some other alloys |
| Superior oxidation and corrosion resistance | Potential for cracking and distortion during printing |
| Ability to produce complex geometries | Strict process control required for optimal properties |
| Lightweight and high strength-to-weight ratio | Limited availability of qualified suppliers |
IN939 Powder
IN939 Powder
| Product | IN939 Powder |
| CAS No. | N/A |
| Appearance | Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | C6H6N6O6 |
| Density | 8.15g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-280/25 |
IN939 Description:
IN939 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingIN939 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Best IN939 Powder for 3D Printing in 2024 IN939 powder is a nickel-based superalloy that exhibits exceptional mechanical properties and high resistance to corrosion and oxidation. It is primarily composed of nickel, chromium, cobalt, molybdenum, and tantalum. This composition gives IN939 powder its remarkable strength, heat resistance, and stability at elevated temperatures. Overview of IN939 Powder for 3D Printing IN939 is a high-performance nickel-based superalloy powder designed for additive manufacturing of critical components needing exceptional mechanical properties at high temperatures. This article provides a comprehensive guide to IN939 powder for 3D printing applications across aerospace, automotive, energy and industrial sectors. Key aspects covered include IN939 composition, properties, print parameters, applications, specifications, suppliers, handling, inspection, comparisons to alternatives, advantages and limitations, and frequently asked questions. Quantitative data is presented in easy-to-reference tables. Composition of IN939 Powder IN939 has a complex precipitation hardening alloy composition:| Element | Weight % | Purpose |
| Nickel | Balance | Principal matrix element |
| Chromium | 15 – 18 | Oxidation resistance |
| Aluminum | 3.8 – 4.8 | Precipitation hardening |
| Titanium | 0.9 – 1.4 | Precipitation hardening |
| Cobalt | 12 – 15 | Solid solution strengthening |
| Tantalum | 3.8 – 4.8 | Carbide former |
| Carbon | 0.05 – 0.15 | Carbide former |
| Boron | 0.006 – 0.012 | Grain boundary strengthener |
| Property | Description |
| High strength | Excellent tensile and creep rupture strength up to 1050°C |
| Thermal stability | Strength maintained up to 1000°C |
| Creep resistance | High stress-rupture life at high temperatures |
| Oxidation resistance | Forms protective Cr2O3 oxide scale |
| Thermal fatigue resistance | Resists cracking during thermal cycling |
| Phase stability | Microstructure stable after prolonged exposures |
| Corrosion resistance | Resistant to hot corrosion, oxidation, sulfidation |
| Parameter | Typical value | Purpose |
| Layer thickness | 20-50 μm | Resolution vs build speed |
| Laser power | 250-500 W | Sufficient melting without evaporation |
| Scan speed | 800-1200 mm/s | Density vs production rate |
| Hatch spacing | 100-200 μm | Mechanical properties |
| Support structure | Minimal | Easy removal |
| Hot isostatic pressing | 1160°C, 100 MPa, 3h | Eliminate porosity |
| Industry | Components |
| Aerospace | Turbine blades, vanes, combustors |
| Power generation | Hot gas path parts, heat exchangers |
| Automotive | Turbocharger wheels, valves |
| Chemical processing | Pumps, valves, reaction vessels |
| Parameter | Specification |
| Particle size | 15-45 μm typical |
| Particle shape | Spherical morphology |
| Apparent density | > 4 g/cc |
| Tap density | > 6 g/cc |
| Hall flow rate | > 23 sec for 50 g |
| Purity | >99.9% |
| Oxygen content | <100 ppm |
| Method | Parameters Tested |
| Sieve analysis | Particle size distribution |
| SEM imaging | Particle morphology |
| EDX | Chemistry and composition |
| XRD | Phases present |
| Pycnometry | Density |
| Hall flow rate | Powder flowability |
| Alloy | High Temperature Strength | Cost | Printability | Ductility |
| IN939 | Excellent | High | Excellent | Low |
| IN738 | Good | Medium | Excellent | Medium |
| IN718 | Fair | Low | Good | Excellent |
| Hastelloy X | Excellent | High | Fair | Medium |
| Pros | Cons |
| Exceptional high temperature strength | Expensive compared to IN718 |
| Excellent oxidation and creep resistance | Significant parameter optimization needed |
| Complex geometries feasible | Limited room temperature ductility |
| Faster processing than cast/wrought | Controlled storage and handling environment |
| Comparable properties to cast alloy | Difficult to machine after printing |
K465 Alloy Powder
K465 Alloy Powder
| Product | K465 Alloy Powder |
| CAS No. | 7440-02-0 |
| Appearance | Silvery-Gray Powder |
| Purity | ≥99%,  ≥99.9%,  ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range. |
| Ingredient | NiCrMoCo |
| Density | 8.1-8.3g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-293/25 |
K465 Alloy Description:
K465 Alloy Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingK465 Alloy Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. K465 Alloy Powder K465 alloy powder is a nickel-based superalloy that offers high strength and corrosion resistance at elevated temperatures. It is widely used in aerospace, power generation, and chemical processing industries. K465 Alloy Powder: Composition, Properties, Applications, and Specifications K465 has become a popular choice for aerospace, power generation, and chemical processing industries where components are subjected to high temperatures or aggressive environments. It allows complex geometries to be 3D printed for optimal performance. This article provides detailed information on the composition, properties, applications, specifications, availability, processing, and comparisons of K465 superalloy powder for additive manufacturing. K465 Alloy Powder Composition The nominal composition of K465 nickel-based superalloy powder is given below:| Element | Weight % |
| Nickel (Ni) | Balance |
| Chromium (Cr) | 15 – 17% |
| Cobalt (Co) | 9 – 10% |
| Molybdenum (Mo) | 3% |
| Tantalum (Ta) | 4.5 – 5.5% |
| Aluminum (Al) | 5 – 6% |
| Titanium (Ti) | 0.5 – 1% |
| Boron (B) | 0.01% max |
| Carbon (C) | 0.03% max |
| Zirconium (Zr) | 0.01% max |
| Niobium (Nb) | 1% max |
| Property | As-Built Condition | After Heat Treatment |
| Tensile Strength | 1050 – 1250 MPa | 1150 – 1350 MPa |
| Yield Strength | 750 – 950 MPa | 1000 – 1200 MPa |
| Elongation | 10 – 25% | 8 – 15% |
| Hardness | 35 – 45 HRC | 42 – 48 HRC |
| Property | Value |
| Density | 8.1 – 8.3 g/cc |
| Melting Point | 1260 – 1350°C |
| Thermal Conductivity | 11 – 16 W/m-K |
| Thermal Expansion Coefficient | 12 – 16 x 10<sup>-6</sup> /K |
| Property | Value |
| Service Temperature | Up to 700°C |
| Oxidation Resistance | Good up to 850°C |
| Phase Stability | Retains strength up to 70% of melting point |
| Creep Rupture Strength | 140 MPa at 700°C for 1000 hours |
| Parameter | Specification |
| Particle size distribution | 15 – 53 microns |
| Oxygen content | 0.05% max |
| Nitrogen content | 0.05% max |
| Morphology | Spheroidal |
| Apparent density | 4.0 – 4.5 g/cc |
| Tap density | 4.5 – 5.0 g/cc |
| Flow rate | 15 – 25 s/50g |
| Manufacturer | Product Name |
| Praxair | TA1 |
| Carpenter Additive | Car Tech K465 |
| Sandvik Osprey | K465-TCP |
| Erasteel | Satellite AM K465 |
| Process | Preheating Temp | Layer Thickness | Laser Power | Scan Speed | Hatch Spacing |
| DMLS | 150 – 180°C | 20 – 60 μm | 195 – 250 W | 600 – 1200 mm/s | 0.08 – 0.12 mm |
| EBM | 1000 – 1100°C | 50 – 200 μm | 5 – 25 mA | 50 – 200 mm/s | 0.1 – 0.2 mm |
| Alloy | K465 | Inconel 718 |
| Density | Higher | Lower |
| Tensile Strength | Similar | Similar |
| Service Temperature | 100°C higher | Up to 650°C |
| Cost | 2X more expensive | More economical |
| Alloy | K465 | Haynes 282 |
| Processability | Better | More difficult |
| Thermal conductivity | Higher | Lower |
| Service temperature | Similar | Similar |
| Cost | Similar | Similar |
| Alloy | K465 | CM 247 LC |
| Density | Lower | Higher |
| Strength | Similar | Similar |
| Ductility | Higher | Lower |
| Cost | Lower | Higher |
| Alloy | K465 | Inconel 625 |
| Service Temperature | Higher | Up to 700°C |
| Corrosion Resistance | Moderate | Excellent |
| Cost | Higher | Lower |
| Availability | More limited | Readily available |

Reviews
There are no reviews yet.