TiNb Alloy Powder

$0.00

TiNb Alloy Powder

Product TiNb Alloy Powder
CAS No. 7440-03-1
Appearance Silvery  Powder
Purity ≥99%,  ≥99.9%,  ≥95%(Other purities are also available)
APS 1-5 µM, 10-53 µM  (Can be customized),  Ask for other available size range.
Ingredient Ti-Nb
Density 140.733g/cm3
Molecular Weight 128.8g/mol
Product Codes NCZ-DCY-271/25

TiNb Alloy Description:

TiNb Alloy Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing

TiNb Alloy Powder Related Information :

Storage Conditions:

Airtight sealed, avoid light and keep dry at room temperature.

Please contact us for customization and price inquiry

Email: contact@nanochemazone.com

Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.

TiNb Alloy Powder

Titanium niobium (TiNb) alloy powder is an advanced material with excellent properties for use in biomedical, aerospace, automotive and other demanding applications. This article provides a comprehensive guide to TiNb alloy powder covering composition, properties, processing, applications, specifications, suppliers, costs, handling and more.

Introduction to TiNb Alloy Powder

TiNb alloy powder is composed of titanium and niobium metals. It offers a unique combination of high strength, low density, biocompatibility, corrosion resistance, fatigue and creep resistance at high temperatures.

TiNb alloys are part of a broader class of titanium intermetallic materials that have superior physical, chemical and mechanical properties compared to pure titanium. The addition of niobium as an alloying element enhances certain properties and allows tailoring TiNb alloys for specific applications.

Some key advantages of TiNb alloy powder include:

High strength-to-weight ratio

Ability to withstand extreme temperatures and stresses

Resists wear, abrasion and corrosion in harsh environments

Biocompatible and non-toxic for medical uses

Can be processed into complex shapes using additive manufacturing

Provides design flexibility for engineers

TiNb alloys compete with nickel and cobalt-based superalloys in the aerospace industry. They also offer an alternative to stainless steels for biomedical implants and devices. TiNb alloys are enabling new applications and designs not possible with other materials.

This article provides a technical reference covering the composition, properties, processing, applications, specifications, costs and other practical aspects of TiNb alloy powder.

TiNb Alloy Powder Composition

TiNb alloys contain primarily titanium and niobium as the key constituent elements. The niobium content typically ranges from 10% to 50% by weight, with the balance being titanium.

The ratio of Ti to Nb can be adjusted to create different grades of TiNb alloys optimized for certain properties. Some common TiNb grades include:

Ti-10Nb – 10% niobium, 90% titanium

Ti-35Nb – 35% niobium, 65% titanium

Ti-45Nb – 45% niobium, 55% titanium

Ti-50Nb – 50% niobium, 50% titanium

Additionally, small amounts of other elements like zirconium, tantalum, molybdenum, chromium may be added to further enhance properties. Oxygen and nitrogen may also be present as impurities.

Table 1: Chemical composition of common TiNb alloy grades

Alloy Grade Niobium Content Titanium Content
Ti-10Nb 10% 90%
Ti-35Nb 35% 65%
Ti-45Nb 45% 55%
Ti-50Nb 50% 50%

Controlling the composition is critical to achieve the desired properties in the final TiNb alloy product. Powder metallurgy techniques allow precise mixing of the constituent metals into an alloy powder feedstock.

TiNb Alloy Powder Properties

TiNb alloys exhibit a range of useful physical, mechanical and chemical properties that make them suitable for high performance applications. Some key properties include:

Physical Properties

Density – 4.5 to 5.5 g/cm3, lower than steel and nickel alloys

Melting point – 1550 to 1750°C depending on composition

Electrical resistivity – 0.5 to 0.6 μΩ.m, higher than pure titanium

Thermal conductivity – 6 to 22 W/m.K, lower than titanium

Mechanical Properties

Tensile strength – 500 to 1100 MPa, increases with niobium content

Yield strength – 300 to 900 MPa

Elongation – 10% to 25%

Hardness – 200 to 350 HV

Fatigue strength – 400 to 600 MPa

Other Properties

Corrosion resistance – Excellent due to protective oxide layer

Wear resistance – Better than titanium due to hardness

Biocompatibility – Non-toxic and non-allergenic

By adjusting the Ti/Nb ratio, properties like strength, ductility, hardness and elastic modulus can be optimized as per application requirements.

Table 2: Typical properties of Ti-35Nb alloy

Property Value
Density 5.2 g/cm3
Melting point 1600°C
Tensile strength 650 MPa
Yield strength 550 MPa
Elongation 15%
Elastic modulus 60 GPa
Hardness 250 HV

TiNb Alloy Powder Applications

The unique properties of TiNb alloys make them suitable for demanding applications in various industries:

Aerospace

Engine components – blades, discs, fasteners

Airframe parts – landing gear, wings, fuselage

Hydraulic systems – pumps, valves, actuators

Automotive

Valve springs, engine valves

Connecting rods, turbocharger rotors

Motor racing components

Biomedical

Orthopedic implants – knee, hip

Dental implants, crowns

Surgical instruments

Medical devices

Chemical Industry

Heat exchangers, reactors

Pumps, valves, pipes

Corrosion-resistant equipment

Other Applications

Sporting goods – golf clubs, bike frames

High-end watches and jewelry

Electrical contacts and connectors

High temperature furnace parts

The combination of strength, temperature resistance, corrosion resistance and biocompatibility allows TiNb alloys to substitute heavier materials across these industries.

Table 3: TiNb alloy applications by industry

Industry Applications
Aerospace Engine components, airframe parts, hydraulic systems
Automotive Valve springs, engine valves, connecting rods
Biomedical Implants, dental, surgical instruments, devices
Chemical Heat exchangers, reactors, pumps, valves
Other Sporting goods, watches, electrical contacts, furnace parts

TiNb Alloy Powder Processing

TiNb alloy powder can be produced via different processing routes:

Metal Powder Blending

elemental titanium and niobium powders are blended together in the required composition

blended powder mixture is mechanically alloyed to form the TiNb alloy powder

Gas Atomization

molten TiNb alloy is atomized with an inert gas into fine droplets

droplets solidify into spherical alloy powder particles

Plasma Rotating Electrode Process (PREP)

TiNb electrode rod is melted using plasma arc and spun at high speeds

centrifugal force causes droplets to break off and solidify into particles

Hydride-Dehydride (HDH) Method

Ti and Nb metals are converted into brittle hydride powders

hydride powders are blended, dehydrided, crushed and sieved

The particle size, morphology, flowability and microstructure of the powder can be controlled by selecting the appropriate manufacturing process. This influences the final properties after consolidation.

Table 4: TiNb alloy powder production methods

Method Description Particle Size Morphology
Mechanical alloying Blending and milling Ti and Nb powders 10 – 50 microns Irregular, angular
Gas atomization Inert gas atomization of molten alloy 15 – 150 microns Spherical
Plasma rotating electrode Centrifugal disintegration of melted electrode 50 – 150 microns Spherical
HDH process Hydriding, dehydriding, crushing blended powders 10 – 63 microns Irregular, angular

Consolidation of TiNb Alloy Powder

TiNb alloy powder can be converted into full-density components using various powder metallurgy consolidation techniques:

Hot Isostatic Pressing (HIP)

encapsulated powder is HIP ped at high temperature and pressure

Vacuum Sintering

powder is compacted and sintered in vacuum furnace

Spark Plasma Sintering

powder is simultaneously heated and compressed by pulsed DC current

Metal Injection Molding (MIM)

powder is mixed with binder, molded, debinded and sintered

Additive Manufacturing

powder bed fusion (SLM, EBM) or directed energy deposition (DED)

HIP and vacuum sintering can achieve close to full density while retaining fine microstructure. Additive manufacturing offers greater geometric freedom. The consolidation process can be optimized to achieve the desired properties.

Table 5: TiNb alloy powder consolidation techniques

Method Description Density Microstructure Geometry
HIP High pressure, high temperature Near full density Fine Simple shapes
Vacuum sintering Sintering in vacuum furnace Near full density Fine Simple shapes
Spark plasma sintering Pulsed current and pressure Full density Ultrafine Simple shapes
Metal injection molding Powder + binder molding Near full density Ultrafine Complex shapes
Additive manufacturing Powder bed fusion or directed energy deposition Near full density Coarse Complex shapes

Specifications for TiNb Alloy Powder

TiNb alloy powder is available in various specifications tailored for different applications:

Compositions: Grades with 10% to 50% niobium content

Particle Size: 10 to 150 microns

Morphology: Spherical, irregular or blended

Production Method: Gas atomized, HDH, blended elemental

Purity: >99.5% titanium, >99.8% niobium

Oxygen Content: <2000 ppm

Flowability: Hall flow rate > 23 sec/50g

Apparent Density: ≥ 2.5 g/cc

Tap Density: ≥ 3.5 g/cc

Chemical composition, particle size distribution, morphology, flow rate and density are commonly specified properties. Custom alloys and powder specifications can be produced for specific applications.

Table 6: Typical specification of Ti-35Nb gas atomized powder

Parameter Specification
Alloy composition Ti-35Nb
Particle size 15 to 45 microns
Morphology Spherical
Production method Gas atomization
Purity Ti >99.5%, Nb >99.8%
Oxygen content <1500 ppm
Flow rate >38 sec/50g
Apparent density ≥ 2.7 g/cc
Tap density ≥ 4.2 g/cc

Table 7: TiNb alloy powder suppliers

Company Materials Production Methods
AP&C Ti, Nb, TiNb alloys Gas atomization
Atlantic Equipment Engineers Ti, Nb, TiNb alloys Gas atomization, blending
TLS Technik TiNb alloys Gas atomization
Metal Technology TiNb alloys Blended elemental, prealloyed
Sandvik Osprey TiNb alloys Gas atomization
Carpenter Additive Custom TiNb alloys Gas atomization

 

Description

Description
Note: For pricing & ordering information, please get in touch with us at sales@nanochemazone.com
Please contact us for quotes on Larger Quantities and customization. E-mail: contact@nanochemazone.com

Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.

NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at sales@nanochemazone.com or by phone at (+1 780 612 4177) if you have any questions.

Reviews (0)

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shipping & Delivery