AerMet100 Stainless Steel Powder
$0.00
AerMet100 Stainless Steel Powder
| Product | AerMet 100 Stainless Steel Powder |
| CAS No. | 12060-00-3 |
| Appearance | Gray or Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Fe-13Cr-3Ni-1Mo-0.25C |
| Density | 8.2g/cm3 |
| Molecular Weight | 155-165 g/mol |
| Product Codes | NCZ-DCY-177/25 |
AerMet100 Stainless Steel Description:
AerMet100 Stainless Steel Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing
AerMet100 Stainless Powder Related Information :
Storage Conditions:
Airtight sealed, avoid light and keep dry at room temperature.
Please contact us for customization and price inquiry
Email: contact@nanochemazone.com
Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters.
AerMet100 Stainless Steel Powder
AerMet100 stainless steel powder is an advanced high strength and corrosion resistant alloy powder designed for additive manufacturing applications. With its unique composition and properties, AerMet100 enables production of high performance parts using 3D printing processes like laser powder bed fusion and binder jetting.
This article provides a comprehensive overview of AerMet100 stainless steel powder covering its composition, properties, applications, specifications, pricing, handling, inspection methods and other technical details.
AerMet100 stainless steel powder is a high-performance alloy powder designed for additive manufacturing applications requiring high strength and fatigue resistance. Some key features of this material include:
High strength and hardness – AerMet100 has excellent strength with tensile strength over 200 ksi and hardness ranging from 30-36 HRC.
Good ductility – Despite the high strength, AerMet100 still retains decent ductility and impact resistance. Elongation values are over 10%.
Excellent fatigue resistance – The fatigue limit of AerMet100 is very high at around 50% of tensile strength. This allows durable components exposed to cyclic stresses.
Resistance to creep – AerMet100 resists deformation under load at high temperatures up to 700°C making it suitable for elevated temperature service.
Corrosion resistance – The stainless steel composition provides corrosion and oxidation resistance for use in harsh environments.
Weldability – The low carbon content allows for good weldability using standard fusion welding methods.
Cost-effectiveness – AerMet100 is more affordable than other exotic alloys with similar properties.
This exceptional balance of properties makes AerMet100 suitable for demanding applications in aerospace, oil & gas, automotive, and industrial sectors. Parts made from AerMet100 powder demonstrate high strength-to-weight ratio, durability, and reliability under operating loads.
AerMet100 Stainless Steel Powder Composition
AerMet100 has a martensitic stainless steel composition with additions of cobalt, nickel, and molybdenum for strength and hardness. The nominal composition is given below:
| Element | Weight % |
| Iron (Fe) | Balance |
| Chromium (Cr) | 15.0 – 17.0 |
| Nickel (Ni) | 7.0 – 10.0 |
| Cobalt (Co) | 8.0 – 10.0 |
| Molybdenum (Mo) | 4.0 – 5.0 |
| Manganese (Mn) | < 1.0 |
| Silicon (Si) | < 1.0 |
| Carbon (C) | < 0.03 |
The key alloying elements and their effects are:
Chromium – Provides corrosion and oxidation resistance
Nickel – Increases toughness and ductility
Cobalt – Solid solution strengthener, increases strength
Molybdenum – Solid solution strengthener, increases strength and creep resistance
Manganese & Silicon – Deoxidizers to improve powder manufacturability
Carbon – Kept low for better weldability
The combination of these elements gives AerMet100 stainless steel its unique set of properties.
AerMet100 Stainless Steel Powder Properties
AerMet100 exhibits the following physical and mechanical properties in as-built AM and heat treated conditions:
| Property | As-Built | Heat Treated |
| Density | 7.9 g/cc | 7.9 g/cc |
| Porosity | < 1% | < 1% |
| Surface Roughness (Ra) | 15-25 μm | 15-25 μm |
| Hardness | 30-35 HRC | 34-38 HRC |
| Tensile Strength | 170-190 ksi | 190-220 ksi |
| Yield Strength (0.2% Offset) | 160-180 ksi | 180-210 ksi |
| Elongation | 8-13% | 10-15% |
| Reduction of Area | 15-25% | 15-25% |
| Modulus of Elasticity | 27-30 Msi | 29-32 Msi |
| CTE (70-400°C) | 11-12 μm/m°C | 11-12 μm/m°C |
| Conductivity | 25-30% IACS | 25-30% IACS |
The properties make AerMet100 suitable for high-strength structural components, aerospace fasteners, downhole tools, valves and pumps, and other critical parts where fatigue resistance is paramount.
AerMet100 Stainless Steel Powder Applications
The unique properties of AerMet100 make it an excellent choice for the following applications:
Aerospace
Structural brackets, braces, fuselage components
Landing gear parts, wing components, empennage
Engine mounts, exhaust components
Turbine blades, impellers, compressor parts
High-strength fasteners, bolts, nuts, rivets
Oil & Gas
Downhole drill tools and components
Wellhead parts, valves, pumps
Pressure vessels, pipe fittings
Subsea/offshore structural parts
Automotive
Power generation components
Drive systems parts like gears, shafts
Structural braces, chassis components
High-performance racing components
Industrial
Robotics parts subject to wear and impact
Dies, molds, tooling
Fluid handling parts like valves and pumps
Other high-cycle loaded components
The excellent fatigue strength of AerMet100 makes it an ideal replacement for components traditionally made from titanium or nickel alloys. The high hardness provides good wear resistance as well.
AerMet100 Stainless Steel Powder Specifications
| Specification | Grade/Alloy |
| AMS 7245 | AerMet100 |
| ASTM F3056 | AlloySpec 23A |
| DIN 17224 | X3NiCoMoAl 15-7-3 |
Typical size distributions for AM processing are:
| Particle Size | Distribution |
| 15-53 μm | 98% |
| <106 μm | 99% |
Chemical composition must conform to the permissible ranges for elements like Cr, Ni, Co, Mo, C, etc. as outlined in AMS 7245 specification for AerMet100 alloy.
Mechanical properties should meet or exceed the minimum values for hardness, tensile strength, yield strength, elongation, and reduction of area stated in AMS 7245.
Non-destructive testing like dye penetrant or magnetic particle inspection should show no critical flaws or defects. Powder should have good flowability and exhibit no clumping.
Storage and Handling
To maintain quality of AerMet100 powder for AM use, the following storage and handling guidelines apply:
Store sealed containers in a cool, dry place away from moisture and sources of contamination
Avoid exposing powder to high humidity (>60% RH) for prolonged time
Allow powder to equilibrate to room temperature prior to unsealing container to prevent condensation
Pour and transfer powder in inert environments with low oxygen content if possible
Use powder handling equipment and accessories made from compatible materials to prevent contamination
Limit reuse of powder to 2-3 cycles maximum to prevent degradation of properties
Conduct testing of used powder to ensure it still meets all specifications for reuse
Proper storage and careful handling is key to preventing powder oxidation, contamination, or changes in flowability.
Safety Information
Wear PPE when handling powder – gloves, respirator mask, goggles
Avoid skin contact to prevent possible allergic reactions
Prevent inhalation of fine powders over long periods
Ensure adequate ventilation and dust collection when processing
Use non-sparking tools to dispense and handle powder
Inert gas blanketing is recommended for powder handling
Follow all applicable safety data sheet (SDS) guidelines
Dispose according to local regulations and ensure containment
AerMet100 alloy powders are generally not hazardous materials but following basic safety practices during storage, handling, and processing is advised.
Inspection and Testing
To ensure AerMet100 powder meets specifications, the following inspection and testing procedures can be used:
| Test Method | Property Validated |
| Visual inspection | Powder flowability, contamination |
| Scanning electron microscopy | Particle size distribution and morphology |
| Energy dispersive X-ray spectroscopy | Alloy chemistry, contamination |
| X-ray diffraction | Phases present, contamination |
| Hall flowmeter | Powder flow rate |
| Apparent density | Powder packing density |
| Tap density test | Powder flowability |
| Sieve analysis | Particle size distribution per ASTM B214 |
| Chemical analysis | Composition per AMS 7245, oxides |
| Density measurement | Powder density vs AMS 7245 |
Mechanical testing of printed specimens per AMS 7245 validates final part properties meet requirements. Testing methods include hardness, tensile, charpy impact, high cycle fatigue, low cycle fatigue, creep rupture, fracture toughness, corrosion, etc.
AerMet100 Stainless Steel Powder Comparison to Similar Materials
| Alloy | Strength | Ductility | Weldability | Cost |
| AerMet100 | Very high | Moderate | Fair | Moderate |
| 17-4PH | High | Low | Poor | Low |
| Custom 465 | Very high | Low | Poor | High |
| 316L | Moderate | High | Excellent | Low |
| Inconel 718 | High | High | Moderate | Very high |
Higher strength than 17-4PH and 316L
Better ductility than Custom 465 for higher impact resistance
More weldable than precipitation hardening alloys
Lower cost than Inconel 718
Limitations of AerMet100:
Lower ductility/fracture toughness than austenitic 316L
Inferior weldability compared to 316L
Higher cost than 17-4PH or 316L
Lower strength than Custom 465 in peak aged condition
Overall, AerMet100 provides an optimal combination of strength, ductility, weldability, and cost for high-performance parts made by AM processes.
FAQ
Q: What are the key benefits of AerMet100 alloy?
A: The main benefits of AerMet100 are its high strength and hardness coupled with good ductility, excellent fatigue resistance, creep resistance, corrosion resistance, and moderate cost. This makes it well suited for critical AM applications.
Q: What heat treatment is used for AerMet100?
A: A typical heat treatment is 1-2 hours solutionizing at 1040-1080°C followed by air or furnace cooling to room temperature, then age hardening at 480°C for 4 hours to achieve optimal strength and hardness.
Q: What welding methods can be used to join AerMet100 parts?
A: Fusion welding methods like GTAW, GMAW, and PAW are recommended for AerMet100 to avoid cracking and minimize distortion. Low heat input and peening of welds is also suggested. Brazing can also produce good joints.
Q: How does AerMet100 compare to maraging steels for AM?
A: AerMet100 has higher ductility but slightly lower strength than maraging steels like 18Ni300 or 18Ni350. Maraging steels have poor weldability. AerMet100 is a good lower-cost alternative to maraging.
Q: Can AerMet100 be machined after AM processing?
A: Yes, AerMet100 can be machined after AM but care must be taken to account for work hardening effects. Low cutting forces, carbide tooling, and adequate coolant is recommended. Annealing may be required after extensive machining.
Q: What particle size range of AerMet100 powder is optimal for AM?
A: The recommended particle size range for AM is 15-45 μm. Finer powders improve resolution but can negatively impact flowability. Coarser powders above 53 μm can cause print defects. The typical sweet spot is 25-35 μm.
Description
Note: For pricing & ordering information, please get in touch with us at sales@nanochemazone.com
Please contact us for quotes on Larger Quantities and customization. E-mail: contact@nanochemazone.com
Customization:
If you are planning to order large quantities for your industrial and academic needs, please note that customization of parameters (such as size, length, purity, functionalities, etc.) is available upon request.
NOTE:
Images, pictures, colors, particle sizes, purity, packing, descriptions, and specifications for the real and actual goods may differ. These are only used on the website for the purposes of reference, advertising, and portrayal. Please contact us via email at sales@nanochemazone.com or by phone at (+1 780 612 4177) if you have any questions.
Only logged in customers who have purchased this product may leave a review.
Related products
17-4PH Stainless Steel Powder
17-4PH Stainless Steel Powder
| Product | 17-4PH Stainless Steel Powder |
| CAS No. | 69139-99-1 |
| Appearance | Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Fe-Cr-Ni-Cu-Nb |
| Density | 7.75-7.85g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-200/25 |
17-4PH Stainless Steel Description:
17-4PH Stainless Steel Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing17-4PH Stainless Steel Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Best 17-4PH stainless steel powder for 3D Printing 17-4PH powder, also known as 17-4 Precipitation Hardening stainless steel powder, is a high-strength, corrosion-resistant material used in various industries. It belongs to the martensitic stainless steel family and offers an excellent combination of mechanical properties and corrosion resistance. The “17-4PH” designation refers to the composition of the alloy, which consists of approximately 17% chromium, 4% nickel, 4% copper, and a small amount of other elements. Overview of 17-4PH Stainless Steel Powder for 3D Printing 17-4PH is a precipitation hardening stainless steel powder widely used for additive manufacturing of high-strength, corrosion-resistant components across aerospace, medical, automotive, and general engineering applications. This article provides a detailed guide to 17-4PH powder for 3D printing. It covers composition, properties, print parameters, applications, specifications, suppliers, handling, inspection, comparisons, pros and cons, and FAQs. Key information is presented in easy-to-reference tables. Composition of 17-4PH Powder 17-4PH is a chromium-copper precipitation hardening stainless steel with a composition of:| Element | Weight % | Purpose |
| Iron | Balance | Principal matrix element |
| Chromium | 15 – 17.5 | Oxidation resistance |
| Copper | 3 – 5 | Precipitation hardening |
| Nickel | 3 – 5 | Austenite stabilizer |
| Niobium | 0.15 – 0.45 | Carbide former |
| Manganese | 1 max | Deoxidizer |
| Silicon | 1 max | Deoxidizer |
| Carbon | 0.07 max | Strengthener and carbide former |
| Property | Description |
| High strength | Tensile strength up to 1310 MPa in aged condition |
| Hardness | Up to 40 HRC when aged |
| Corrosion resistance | Comparable to 316L stainless in many environments |
| Toughness | Superior to martensitic stainless steels |
| Wear resistance | Better than 300 series stainless steels |
| High temperature stability | Strength maintained up to 300°C |
| Parameter | Typical value | Purpose |
| Layer height | 20-100 μm | Balance speed and resolution |
| Laser power | 150-400 W | Sufficient melting without evaporation |
| Scan speed | 400-1000 mm/s | Productivity vs density |
| Hatch spacing | 100-200 μm | Density and properties |
| Support structure | Minimal | Easy removal |
| Hot isostatic pressing | 1120°C, 100 MPa, 3h | Eliminate porosity |
| Industry | Applications |
| Aerospace | Structural brackets, fixtures, actuators |
| Medical | Dental implants, surgical instruments |
| Automotive | High strength fasteners, gears |
| Consumer | Watch cases, sporting equipment |
| Industrial | End-use metal tooling, jigs, fixtures |
| Parameter | Specification |
| Particle size range | 15-45 μm typical |
| Particle shape | Spherical morphology |
| Apparent density | > 4 g/cc |
| Tap density | > 6 g/cc |
| Hall flow rate | > 23 sec for 50 g |
| Purity | >99.9% |
| Oxygen content | <100 ppm |
| Method | Parameters Checked |
| Sieve analysis | Particle size distribution |
| SEM imaging | Particle morphology |
| EDX | Chemistry and composition |
| XRD | Phases present |
| Pycnometry | Density |
| Hall flow rate | Powder flowability |
| Alloy | Strength | Corrosion Resistance | Cost | Weldability |
| 17-4PH | Excellent | Good | Medium | Fair |
| 316L | Medium | Excellent | Medium | Excellent |
| IN718 | Good | Good | High | Fair |
| CoCr | Medium | Fair | Medium | Excellent |
| Pros | Cons |
| High strength-to-weight ratio | Lower oxidation resistance than austenitic stainless steels |
| Good combination of strength and corrosion resistance | Required post-processing like HIP and heat treatment |
| Lower cost than exotic alloys | Controlled atmosphere storage needed |
| Established credentials in AM | Difficult to weld and machine |
| Comparable properties to wrought material | Susceptible to pitting and crevice corrosion |
310 Powder
310 Powder
| Product | 310 Powder |
| CAS No. | 12060-00-3 |
| Appearance | Silvery Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Fe-25Cr-20Ni |
| Density | 7.9g/cm3 |
| Molecular Weight | 150-160 g/mol |
| Product Codes | NCZ-DCY-170/25 |
310 Description:
310 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing310 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. 310 Powder 310 powder is an austenitic stainless steel powder containing high levels of chromium, nickel and nitrogen for enhanced mechanical properties and corrosion resistance. It offers an excellent combination of strength, hardness, toughness and wear resistance. Overview of 310 Powder 310 powder is an austenitic stainless steel powder containing high levels of chromium, nickel and nitrogen for enhanced mechanical properties and corrosion resistance. It offers an excellent combination of strength, hardness, toughness and wear resistance. 310 Powder Properties and Characteristics| Properties | Details |
| Composition | Fe-25Cr-20Ni-0.25N alloy |
| Density | 8.1 g/cc |
| Particle shape | Irregular, angular |
| Size range | 10-150 microns |
| Apparent density | Up to 50% of true density |
| Flowability | Moderate |
| Strength | Very high for a 300 series powder |
| Wear resistance | Excellent due to work hardening |
| Element | Weight % |
| Iron (Fe) | Balance |
| Chromium (Cr) | 24-26% |
| Nickel (Ni) | 19-22% |
| Nitrogen (N) | 0.2-0.4% |
| Carbon (C) | 0.25% max |
| Silicon (Si) | 1.5% max |
| Manganese (Mn) | 2% max |
| Sulfur (S) | 0.03% max |
| Phosphorus (P) | 0.045% max |
| Property | Values |
| Density | 8.1 g/cc |
| Melting point | 1370-1400°C |
| Electrical resistivity | 0.8 μΩ-m |
| Thermal conductivity | 12 W/mK |
| Thermal expansion | 11 x 10^-6 /K |
| Maximum service temperature | 1150°C |
| Property | Values |
| Tensile strength | 760-900 MPa |
| Yield strength | 450-550 MPa |
| Elongation | 35-40% |
| Hardness | 32-38 HRC |
| Impact strength | 50-100 J |
| Modulus of elasticity | 190-210 GPa |
| Industry | Example Uses | ||
| Petrochemical | Valves, pumps, shafts | ||
| Food processing | Extruder screws, blades | ||
| Automotive | Gears, shafts, fasteners | ||
| Manufacturing | Press tooling, bearing cages | ||
| Medical | Surgical instruments, implants | ||
| Standard | Description |
| ASTM A276 | Standard specification for stainless steel bars and shapes |
| ASTM A314 | Standard for stainless steel bent pipe and tubing |
| ASME SA-479 | Specification for stainless steel tubing |
| AMS 5517 | Annealed corrosion resistant steel bar, wire, forgings |
| AMS 5903 | Precipitation hardening stainless steel bar, wire, forgings |
| Particle Size | Characteristics |
| 10-45 microns | Ultrafine grade for high density and surface finish |
| 45-150 microns | Coarse grade provides good flowability |
| Apparent Density | Details |
| Up to 50% of true density | For irregular powder morphology |
| 4.5-5.5 g/cc typical | Improves with greater packing density |
| Method | Details |
| Gas atomization | High pressure inert gas breaks molten metal stream into fine droplets |
| Water atomization | High pressure water jet breaks metal into fine particles |
| Vacuum induction melting | High purity input materials melted under vacuum |
| Multiple remelting | Improves chemical homogenization |
| Sieving | Classifies powder into different particle size ranges |
| Recommendation | Reason |
| Use PPE and ventilation | Avoid exposure to fine metallic particles |
| Ensure proper grounding | Prevent static discharge while handling |
| Avoid ignition sources | Powder can combust in oxygen atmosphere |
| Use non-sparking tools | Prevent possibility of ignition |
| Follow safety protocols | Reduce risk of burns, inhalation, ingestion |
| Store in stable containers | Prevent contamination or oxidation |
| Parameter | 310 | 316L |
| Density | 8.1 g/cc | 8.0 g/cc |
| Strength | 760-900 MPa | 485-550 MPa |
| Hardness | 32-38 HRC | 79-95 HRB |
| Corrosion resistance | Very good | Excellent |
| Cost | Low | High |
| Uses | Wear parts, tools | Chemical plants, marine |
430L Powder
430L Powder
| Product | 430L Powder |
| CAS No. | 12597-68-1 |
| Appearance | Silvery or Gray Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Fe-16Cr |
| Density | 7.7g/cm3 |
| Molecular Weight | 150-160 g/mol |
| Product Codes | NCZ-DCY-174/25 |
430L Description:
430L Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricing430L Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. 430L Powder 430L powder is a ferritic stainless steel powder containing 17% chromium with additions of molybdenum and niobium for enhanced corrosion resistance. It provides an optimal balance of corrosion resistance, strength, weldability and cost. Overview of 430L Powder 430L powder is a ferritic stainless steel powder containing 17% chromium with additions of molybdenum and niobium for enhanced corrosion resistance. It provides an optimal balance of corrosion resistance, strength, weldability and cost. Key properties and advantages of 430L powder: 430L Powder Properties and Characteristics| Properties | Details |
| Composition | Fe-17Cr-Nb-Mo alloy |
| Density | 7.7 g/cc |
| Particle shape | Irregular, angular |
| Size range | 10-150 microns |
| Apparent density | Up to 50% of true density |
| Flowability | Moderate |
| Corrosion resistance | Excellent in many environments |
| Strengthening | Solid solution and precipitation strengthening |
| Element | Weight % |
| Iron (Fe) | Balance |
| Chromium (Cr) | 16-18% |
| Carbon (C) | 0.12% max |
| Silicon (Si) | 1% max |
| Manganese (Mn) | 1% max |
| Molybdenum (Mo) | 0.5% max |
| Niobium (Nb) | 0.3-0.6% |
| Nitrogen (N) | 0.03% max |
| Sulfur (S) | 0.03% max |
| Property | Values |
| Density | 7.7 g/cc |
| Melting point | 1400-1450°C |
| Electrical resistivity | 0.6-0.7 μΩ-m |
| Thermal conductivity | 26 W/mK |
| Curie temperature | 1440°C |
| Maximum service temperature | 650-750°C |
| Property | Values |
| Tensile strength | 450-650 MPa |
| Yield strength | 250-350 MPa |
| Elongation | 35-45% |
| Modulus of elasticity | 190-210 GPa |
| Hardness | 80-90 HRB |
| Impact strength | 50-100 J |
| Industry | Example Uses |
| Chemical | Tanks, valves, pipes, pumps |
| Automotive | Exhaust components, fuel injection parts |
| Construction | Cladding, architectural features |
| Oil and gas | Wellhead equipment, drilling tools |
| Manufacturing | Pressing tooling, molds, dies |
| Standard | Description |
| ASTM A743 | Standard for corrosion resistant chromium steel castings |
| ASTM A744 | Standard for corrosion resistant chromium steel sheet and strip |
| AMS 5759 | Annealed corrosion resistant steel bar, wire, forgings |
| SAE J405 | Automotive weathering steel sheet |
| DIN 17440 | Stainless steels for corrosion resistant applications |
| Particle Size | Characteristics |
| 10-45 microns | Ultrafine grade for high density and surface finish |
| 45-150 microns | Coarse grade provides good flowability |
| 15-150 microns | Standard grade for pressing and sintering |
| Apparent Density | Details |
| Up to 50% of true density | For irregular powder morphology |
| 3.5-4.5 g/cc typical | Improves with greater packing density |
| Method | Details |
| Gas atomization | High pressure inert gas breaks molten metal stream into fine droplets |
| Water atomization | High pressure water jet breaks metal into fine particles |
| Vacuum induction melting | High purity input materials melted under vacuum |
| Multiple remelting | Improves chemical homogenization |
| Sieving | Classifies powder into different particle size ranges |
| Recommendation | Reason |
| Use PPE and ventilation | Avoid exposure to fine metallic particles |
| Ensure proper grounding | Prevent static discharge while handling |
| Avoid ignition sources | Powder can combust in oxygen atmosphere |
| Use non-sparking tools | Prevent possibility of ignition during handling |
| Follow safety protocols | Reduce risk of burns, inhalation, and ingestion |
| Store in stable containers | Prevent contamination or oxidation |
| Test | Details |
| Chemical analysis | ICP and XRF verify composition |
| Particle size distribution | Laser diffraction determines size distribution |
| Apparent density | Hall flowmeter test per ASTM B212 standard |
| Powder morphology | SEM imaging shows particle shape |
| Flow rate analysis | Gravity flow rate through specified nozzle |
| Loss on ignition | Determines residual moisture content |
| Parameter | 430L | 304L |
| Density | 7.7 g/cc | 8.0 g/cc |
| Strength | 450-650 MPa | 520-620 MPa |
| Corrosion resistance | Excellent | Outstanding |
| Heat resistance | Good | Excellent |
| Weldability | Good | Excellent |
| Cost | Low | High |
| Uses | Automotive, construction | Chemical processing, marine |
Al 3003 Powder
Al 3003 Powder
| Product | Al 3003 Powder |
| CAS No. | 7429-90-5 |
| Appearance | Gray Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Al-1.2Mn-0.12Cu |
| Density | 2.73g/cm3 |
| Molecular Weight | 27g/mol |
| Product Codes | NCZ-DCY-179/25 |
Al 3003 Description:
Al 3003 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 3003 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 3003 powder Al 3003 powder is an aluminum alloy powder composed mainly of aluminum and manganese. It belongs to the 3xxx series of aluminum alloys, which are known for their excellent workability and corrosion resistance. The powder form allows for easy handling and processing, making it suitable for various manufacturing techniques. Overview of Al 3003 Powder Al 3003 or 3A21 aluminum is a wrought alloy known for its good cold formability, weldability and corrosion resistance. The manganese additions enhance strength through solid solution strengthening while maintaining workability. Key characteristics of Al 3003 powder include: Moderate strength with good ductility Excellent formability and weldability Good corrosion resistance High thermal and electrical conductivity Low density Available in a range of powder sizes and shapes Al 3003 powder is used widely in chemical tanks, pipeline, automotive parts, heat exchangers, utensils, and other applications needing moderate strength, formability and corrosion resistance. Chemical Composition of Al 3003 Powder| Element | Weight % |
| Aluminum (Al) | Balance |
| Manganese (Mn) | 1.0-1.5% |
| Iron (Fe) | 0.7% max |
| Silicon (Si) | 0.6% max |
| Copper (Cu) | 0.05-0.20% |
| Zinc (Zn) | 0.10% max |
| Magnesium (Mg) | 0.10% max |
| Chromium (Cr) | 0.10% max |
| Property | Value |
| Density | 2.73 g/cm3 |
| Melting Point | 645-650°C |
| Thermal Conductivity | 180 W/mK |
| Electrical Conductivity | 43-44% IACS |
| Young’s Modulus | 68-72 GPa |
| Poisson’s Ratio | 0.33 |
| Tensile Strength | 145-185 MPa |
| Yield Strength | 110-140 MPa |
| Elongation | 12-20% |
| Hardness | 35-55 Brinell |
| Parameter | Al 3003 | Al 6061 |
| Alloy type | Non-heat treatable | Heat treatable |
| Mn content | 1.0-1.5% | 0.15% max |
| Mg content | 0.1% max | 0.8-1.2% |
| Strength | Moderate | Higher |
| Corrosion resistance | Good | Excellent |
| Weldability | Excellent | Good |
| Cost | Lower | Higher |
| Applications | Chemical tanks, utensils | Aerospace, automotive parts |
Al 3103 Powder
Al 3103 Powder
| Product | Al 3103 Powder |
| CAS No. | 7429-90-5 |
| Appearance | Grayish Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Al-1.2Mn |
| Density | 2.73g/cm3 |
| Molecular Weight | 27g/mol |
| Product Codes | NCZ-DCY-181/25 |
Al 3130 Description:
Al 3130 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 3130 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 3103 powder Al 3103 powder is a form of aluminum alloy that exhibits excellent mechanical properties, corrosion resistance, and thermal conductivity. It belongs to the 3xxx series of aluminum alloys, which are known for their moderate strength and exceptional formability. The powder form allows for easier handling, processing, and fabrication, making it suitable for various industrial applications. Overview of Al 3103 Powder Al 3103 is a non-heat treatable wrought aluminum alloy known for its excellent corrosion resistance, good formability and weldability. Manganese additions improve strength through solid solution strengthening while maintaining excellent ductility. Key characteristics of Al 3103 powder include: Moderate strength with high ductility and toughness Excellent weldability and formability Very good corrosion resistance High thermal and electrical conductivity Low density Available in various particle size distributions Al 3103 powder is suitable for applications like chemical tanks, food processing equipment, heat exchangers, road tankers, utensils etc. needing moderate strength combined with excellent corrosion resistance. Chemical Composition of Al 3103 Powder| Element | Weight % |
| Aluminum (Al) | Balance |
| Manganese (Mn) | 1.0-1.5% |
| Silicon (Si) | 0.6% max |
| Iron (Fe) | 0.7% max |
| Copper (Cu) | 0.10% max |
| Magnesium (Mg) | 0.10% max |
| Zinc (Zn) | 0.10% max |
| Chromium (Cr) | 0.05-0.20% |
| Property | Value |
| Density | 2.73 g/cm3 |
| Melting Point | 630-654°C |
| Thermal Conductivity | 130 W/mK |
| Electrical Conductivity | 41-43% IACS |
| Young’s Modulus | 70 GPa |
| Poisson’s Ratio | 0.33 |
| Tensile Strength | 110-180 MPa |
| Yield Strength | 55-110 MPa |
| Elongation | 18-30% |
| Hardness | 25-55 Brinell |
| Parameter | Al 3103 | Al 3003 |
| Alloy type | Non-heat treatable | Non-heat treatable |
| Mn content | 1.0-1.5% | 1.0-1.5% |
| Strength | Slightly lower | Slightly higher |
| Corrosion resistance | Excellent | Excellent |
| Weldability | Excellent | Excellent |
| Cost | Lower | Higher |
Al 7075 Powder
Al 7075 Powder
| Product | Al 7075 Powder |
| CAS No. | 7429-90-5 |
| Appearance | Gray Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Al-5.6Zn-2.5Mg-1.6Cu |
| Density | 2.81g/cm3 |
| Molecular Weight | 270g/mol |
| Product Codes | NCZ-DCY-179/25 |
Al 7075 Description:
Al 7075 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAl 7075 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. Al 7075 powder Al 7075 powder is a high-strength aluminum alloy composed primarily of aluminum, zinc, copper, and small amounts of magnesium and chromium. It is renowned for its impressive mechanical properties, making it an ideal choice for applications that require strength, durability, and lightweight characteristics. Al 7075 powder is typically produced through a process called atomization, where molten aluminum is sprayed and solidified into fine powder particles. Overview of Al 7075 Powder Al 7075 is one of the highest strength 7000 series aluminum alloys, offering strength superior to many steels. Zinc is the main alloying addition while magnesium imparts strength through precipitation hardening. Key properties of Al 7075 powder include: Exceptionally high tensile and yield strength High hardness and good fatigue strength Good toughness and moderate ductility Excellent finishing characteristics High corrosion resistance Available in range of powder sizes and shapes Al 7075 powder is ideal for high-performance aerospace and defense components needing the optimal combination of strength, hardness, fatigue resistance, and moderate weldability. Chemical Composition of Al 7075 Powder| Element | Weight % |
| Aluminum (Al) | 87.1-91.4% |
| Zinc (Zn) | 5.1-6.1% |
| Magnesium (Mg) | 2.1-2.9% |
| Copper (Cu) | 1.2-2.0% |
| Iron (Fe) | 0-0.5% |
| Silicon (Si) | 0-0.4% |
| Manganese (Mn) | 0-0.3% |
| Chromium (Cr) | 0.18-0.28% |
| Titanium (Ti) | 0-0.2% |
| Property | Value |
| Density | 2.81 g/cm3 |
| Melting Point | 477–635°C |
| Thermal Conductivity | 130–210 W/mK |
| Electrical Conductivity | 22-30% IACS |
| Young’s Modulus | 71–72 GPa |
| Poisson’s Ratio | 0.33 |
| Tensile Strength | 570–635 MPa |
| Yield Strength | 505–570 MPa |
| Elongation | 7–10% |
| Hardness | 150–190 Brinell |
| Parameter | Al 7075 | Al 6061 |
| Alloy type | Heat treatable | Heat treatable |
| Zn content | 5.1-6.1% | 0% |
| Mg content | 2.1-2.9% | 0.8-1.2% |
| Strength | Much higher | Moderate |
| Machinability | Poor | Excellent |
| Weldability | Poor | Very good |
| Corrosion resistance | Moderate | Excellent |
| Cost | Higher | Lower |
Alloy Series Powder
Alloy Series Powder
| Product | Alloy Series Powder |
| CAS No. | 65997-19-5 |
| Appearance | Gray Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | NiCrCoMoFeAl |
| Density | 8.2-8.5g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-240/25 |
Alloy Series Description:
Alloy Series Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingAlloy Series Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. High temperature alloy series High-temperature alloy series powders are designed to handle extreme high-temperature environments, providing excellent performance and heat-resistant properties. Let’s explore this range of products and understand their potential for high temperature applications.| Product | Specification | Apparent Density | Flow Ability | Oxygen Content | Tensile Strength | Yield Strength | Elongation |
| GH3625 | 15-53µm 45-105µm 75-150µm | ≥4.40g/cm³ | ≤20s/50g | ≤300ppm | 1000±50Mpa | 600±50Mpa | 35±5% |
| GH4169 | ≥4.20g/cm³ | ≤20s/50g | ≤300ppm | 1250±30Mpa | 1000±30Mpa | 18±3% | |
| GH3230 | ≥4.40g/cm³ | ≤20s/50g | ≤300ppm | 930±30Mpa | 930±30Mpa | 25±5% | |
| GH3536 | ≥4.40g/cm³ | ≤20s/50g | ≤300ppm | 850±30Mpa | 550±20Mpa | 42±5% |
AlSi10 Powder
AlSi10 Powder
| Product | AlSi10 Powder |
| CAS No. | N/A |
| Appearance | Gray-Silver Metallic Powder |
| Purity | ≥99%, ≥99.9%, ≥95%(Other purities are also available) |
| APS | 1-5 µM, 10-53 µM (Can be customized), Ask for other available size range. |
| Ingredient | Al90Si10 |
| Density | 2.67g/cm3 |
| Molecular Weight | N/A |
| Product Codes | NCZ-DCY-190/25 |
AlSi10 Description:
AlSi10 Powder is one of the numerous advanced ceramic materials manufactured by Nanochemazone. Nanochemazone produces too many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information are available. Please request a quote above for more information on lead time and pricingALSi10 Powder Related Information :
Storage Conditions: Airtight sealed, avoid light and keep dry at room temperature. Please contact us for customization and price inquiry Email: contact@nanochemazone.com Note: We supply different size ranges of Nano and micron as per the client’s requirements and also accept customization in various parameters. AlSi10 Powder AlSi10 is an aluminum alloy powder containing 10% silicon and remainder aluminum. It offers an excellent combination of strength, low density, thermal properties, corrosion resistance and weldability. AlSi10 Powder Composition| Element | Composition |
| Aluminum (Al) | Balance |
| Silicon (Si) | 9-11% |
| Property | Value |
| Density | 2.7 g/cm3 |
| Melting Point | ~600°C |
| Thermal Conductivity | 150-180 W/m-K |
| Electrical Conductivity | 35-40% IACS |
| Coefficient of Thermal Expansion | 21-23 x 10<sup>-6</sup> /°C |
| Modulus of Elasticity | 80-85 GPa |
| Tensile Strength | 240-300 MPa |
| Elongation | 1-5% |
| Hardness | 80-90 Brinell |
| Corrosion Resistance | Excellent |
| Applications | Benefits |
| Aerospace components | Low density combined with high strength. |
| Automotive parts | Weight reduction without compromising mechanical performance. |
| Electronic housings | Thermal management for heat dissipation combined with low weight. |
| Medical implants | Biocompatible, non-toxic, corrosion resistant. |
| Thermal management | High thermal conductivity to dissipate heat. |
| Parameter | Options |
| Particle size | 5-150 microns |
| Particle shape | Spherical, irregular |
| Apparent density | Up to 2.7 g/cm3 |
| Flow rate | Up to 25 s/50g |
| Purity | Up to 99.7% |
| Alloy variants | AlSi12, AlSi5 |
| Method | Benefits |
| Additive manufacturing | Excellent geometric freedom for complex shapes. |
| Metal injection molding | High precision net shape capability. |
| Pressing and sintering | Economical for high volume simpler geometries. |
| Extrusion | Continuous production of rods and tubes. |
| Isostatic pressing | Achieves full density and improves properties. |
| Heat Treatment | Details | Purpose |
| Solutionizing | 530-550°C, quench | Dissolve soluble phases |
| Artificial Aging | 150-180°C, 5-10 hrs | Precipitation hardening |
| Annealing | 350°C, slow cooling | Restores ductility |
| Alloy | AlSi10 | AlSi12 | Al6061 | Al7075 |
| Strength | High | Highest | Medium | Very High |
| Weldability | Excellent | Poor | Good | Poor |
| Corrosion Resistance | Excellent | Excellent | Excellent | Good |
| Thermal Conductivity | High | Medium | Medium | Low |
| Density | Low | Low | Low | Low |
| Cost | Low | High | Medium | High |
| Hazard | Precautions | PPE |
| Skin/eye contact | Avoid direct contact. Rinse if exposed. | Gloves, goggles |
| Inhalation | Avoid breathing dust. Ensure ventilation. | Respirator |
| Ingestion | Avoid hand-mouth transfer. Wash hands. | – |
| Fire | Use sand. Do not use water. | Protective gear |
| Parameter | Method | Specification |
| Chemical composition | OES, XRF, wet chemistry | Conformance to Al, Si, Mg content |
| Particle size distribution | Laser diffraction, sieving | D10, D50, D90 within range |
| Powder morphology | SEM imaging | Spherical shape and flowability |
| Apparent density | Hall flowmeter test | Minimum specified density |
| Flow rate | Hall flow meter test | Maximum flow seconds |
| Impurity levels | ICP or LECO analysis | Low oxygen, moisture content |
- What is AlSi10 alloy used for?
- AlSi10 is widely used in aerospace, automotive, and electronics applications where low weight and high strength are critical such as engine mounts, pistons, housings, heat sinks.
- Does AlSi10 require heat treatment?
- Yes, solution heat treatment followed by aging can significantly enhance the tensile strength by precipitating alloying elements like silicon.
- What methods can consolidate AlSi10 powder?
- AlSi10 powder can be consolidated to full density using additive manufacturing, metal injection molding, extrusion, and powder compact forging.
- Is AlSi10 weldable?
- Yes, AlSi10 has excellent weldability owing to the silicon alloying addition which improves fluidity in the molten state. This allows easy fusion welding.
- Is AlSi10 powder safe to handle?
- Like any fine metal powder, standard safety precautions should be taken during storage, handling and processing of AlSi10 powder to minimize health and safety risks.

Reviews
There are no reviews yet.